线段的垂直平分线的性质和判定-(优质课)获奖课件-(优质课)获奖课件.ppt

上传人(卖家):ziliao2023 文档编号:5878310 上传时间:2023-05-13 格式:PPT 页数:65 大小:2.41MB
下载 相关 举报
线段的垂直平分线的性质和判定-(优质课)获奖课件-(优质课)获奖课件.ppt_第1页
第1页 / 共65页
线段的垂直平分线的性质和判定-(优质课)获奖课件-(优质课)获奖课件.ppt_第2页
第2页 / 共65页
线段的垂直平分线的性质和判定-(优质课)获奖课件-(优质课)获奖课件.ppt_第3页
第3页 / 共65页
线段的垂直平分线的性质和判定-(优质课)获奖课件-(优质课)获奖课件.ppt_第4页
第4页 / 共65页
线段的垂直平分线的性质和判定-(优质课)获奖课件-(优质课)获奖课件.ppt_第5页
第5页 / 共65页
点击查看更多>>
资源描述

1、13131 1轴对称轴对称131.2线段的垂直平分线的性质线段的垂直平分线的性质(2课时课时)第1课时线段的垂直平分线的性质与判定掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题重点线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题难点灵活运用线段的垂直平分线的性质和判定解题一、问题导入我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它二、探究新知(一)线段的垂直平分线的性质教师出示教材第61页探究,让学生测量,思考有什么发现?如图,直线l垂直平分线段AB,P1,P2,P3是l上

2、的点,分别量一量点P1,P2,P3到点A与点B的距离,你有什么发现?学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等性质的证明:教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PAPB.教师分析证明思路:图中有两个直角三角形,APC和BPC,只要证明这两个三角形全等,便可证得PAPB.教师要求学生自己写已知,求证,自己证明学生证明完后教师板书证明过程供学生对照已知:MNAB,垂足为点C,ACBC,点P是直线MN上任意一点求证:PAPB.证明:在APC和

3、BPC中,PCPC(公共边),PCBPCA(垂直定义),ACBC(已知),APC BPC(SAS)PAPB(全等三角形的对应边相等)因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等(二)线段的垂直平分线的判定你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果那么”的形状,要写出它的逆命题,需分析命题的条件和结论,将原命题写成“如果那么”的形式,逆命题就容易写出鼓励学生找出原命题的条件和结论原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点与这条线段两个端点的距离相等”此时,逆命题就很容易写出来“如果有一个点与线段两个端点的

4、距离相等,那么这个点在这条线段的垂直平分线上”写出逆命题后,就想到判断它的真假如果真,则需证明它;如果假,则需用反例说明请同学们自行在练习册上完成学生给出了如下的四种证法已知:线段AB,点P是平面内一点,且PAPB.求证:P点在AB的垂直平分线上证法一过点P作已知线段AB的垂线PC,PAPB,PCPC,RtPAC RtPBC(HL)ACBC,即P点在AB的垂直平分线上证法二取AB的中点C,过P,C作直线PAPB,PCPC,ACCB,APC BPC(SSS)PCAPCB(全等三角形的对应角相等)又PCAPCB180,PCAPCB90,即PCAB,P点在AB的垂直平分线上证法三过P点作APB的平分

5、线PAPB,12,PCPC,APC BPC(SAS)ACBC,PCAPCB(全等三角形的对应边相等,对应角相等)又PCAPCB180,PCAPCB90,P点在AB的垂直平分线上证法四过P作线段AB的垂直平分线PC.ACCB,PCAPCB90,P在AB的垂直平分线上四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂”师生共析:如图(1),PDAB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下,“过P作AB的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的从同学们的推理证明过程可知线段的垂直平分线的性质的

6、逆命题是真命题,我们把它称为线段的垂直平分线的判定要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线下面我们一同来写出已知、求作、作法,体会作法中每一步的依据例1尺规作图:经过已知直线外一点作这条直线的垂线已知:直线AB和AB外一点C.(如下图)求作:AB的垂线,使它经过点C.师:根据上面作法中的步骤,想一想,为什么直线CF就是所求作的垂线?请与同伴进行交流生:从作法的第(2)(3)步可知CDCE,DFEF,C,F都在AB的垂直平分线上(线段的垂直平分线的判定)

7、CF就是线段AB的垂直平分线(两点确定一条直线)师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB的中点,所以我们也用这种方法找线段的中点三、课堂练习教材第62页练习第1,2题四、课堂小结本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线五、布置作业1教材习题13.1第6题2补充题:(1)下图是某跨河大桥的斜拉索,图中PAPB,POAB,则必有AOBO,为什么?(2)如左下图,ABC中,AC16 cm,DE为AB的垂直平分线,BCE的周长为26 cm.求BC的长(3)有A,B,C三个村庄

8、(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等11112 2与三角形有关的角与三角形有关的角11112.22.2三角形的外角三角形的外角1了解三角形的外角2知道三角形的外角等于与它不相邻的两个内角的和3学会运用简单的说理来计算三角形相关的角重点三角形外角的性质难点运用三角形外角性质进行有关计算时能准确地推理一、复习引入什么是三角形的内角?它是由什么组

9、成的?三角形内角和定理的内容是什么?教师提出问题,学生举手回答问题二、探究新知1探究三角形外角的概念教师布置学生自学教材第14页最后一段话的内容,然后完成以下问题:(1)举例说明什么是三角形的外角(上黑板画图说明)(2)如图,ADB,BPC,BDC,DPC分别是哪个三角形的外角?2探究三角形外角的性质老师布置学生自学教材第15页思考的内容,然后同学间进行交流、讨论,归纳三角形的外角有什么性质,并提出以下问题:你能否用证明的方法说明你所归纳的性质?学生归纳得出三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和三、举例分析例1如图,BAE,CBF,ACD是ABC的三个外角,它们的和是多少?

10、教师出示教材例4,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角,然后师生共同写出规范的解答过程解:由三角形的一个外角等于与它不相邻的两个内角的和,得BAE23,CBF13,ACD12.所以BAECBFACD2(123)由123180,得BAECBFACD2180360.四、练习与小结练习:教材练习教师布置练习,学生举手回答小结:谈谈你对三角形外角的认识教师引导学生谈谈对三角形外角的认识主要从定义和性质两个方面入手五、布置作业习题11.2第5,6,8题,选做题:第11题通过三角形的内角和回顾引入,然后通过学生的预习,在他们的理解基础上,去学习三角形的外角的定义,这

11、样能够加深他们对外角定义的理解,在探索三角形外角定理的时候,我也是采取了学生去探索的思想,让他们自己大胆猜想,然后同学们在老师的引导下去证明自己的猜想,这样以后才能运用自如11112 2与三角形有关的角与三角形有关的角11112.22.2三角形的外角三角形的外角1了解三角形的外角2知道三角形的外角等于与它不相邻的两个内角的和3学会运用简单的说理来计算三角形相关的角重点三角形外角的性质难点运用三角形外角性质进行有关计算时能准确地推理一、复习引入什么是三角形的内角?它是由什么组成的?三角形内角和定理的内容是什么?教师提出问题,学生举手回答问题二、探究新知1探究三角形外角的概念教师布置学生自学教材第

12、14页最后一段话的内容,然后完成以下问题:(1)举例说明什么是三角形的外角(上黑板画图说明)(2)如图,ADB,BPC,BDC,DPC分别是哪个三角形的外角?2探究三角形外角的性质老师布置学生自学教材第15页思考的内容,然后同学间进行交流、讨论,归纳三角形的外角有什么性质,并提出以下问题:你能否用证明的方法说明你所归纳的性质?学生归纳得出三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和三、举例分析例1如图,BAE,CBF,ACD是ABC的三个外角,它们的和是多少?教师出示教材例4,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角,然后师生共同写出规范的解答

13、过程解:由三角形的一个外角等于与它不相邻的两个内角的和,得BAE23,CBF13,ACD12.所以BAECBFACD2(123)由123180,得BAECBFACD2180360.四、练习与小结练习:教材练习教师布置练习,学生举手回答小结:谈谈你对三角形外角的认识教师引导学生谈谈对三角形外角的认识主要从定义和性质两个方面入手五、布置作业习题11.2第5,6,8题,选做题:第11题通过三角形的内角和回顾引入,然后通过学生的预习,在他们的理解基础上,去学习三角形的外角的定义,这样能够加深他们对外角定义的理解,在探索三角形外角定理的时候,我也是采取了学生去探索的思想,让他们自己大胆猜想,然后同学们在

14、老师的引导下去证明自己的猜想,这样以后才能运用自如14141 1整式的乘法整式的乘法141.4整式的乘法整式的乘法(4课时课时)第第2课时多项式乘多项式课时多项式乘多项式经历探索多项式乘法法则的过程,理解多项式乘法法则,灵活运用多项式乘以多项式的运算法则重点多项式乘法的运算难点探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“负号”的问题一、情境导入教师引导学生复习单项式多项式运算法则整式的乘法实际上就是:单项式单项式;单项式多项式;多项式单项式组织讨论:问题为了扩大街心花园的绿地面积,把一块原长a m,宽p m的长方形绿地,加长了b m,加宽了q m你能用几种方法求出扩大后的绿地面积?

15、如何计算?小组讨论,你从计算过程中发现了什么?由于(ab)(pq)和(apaqbpbq)表示同一个量,即有(ab)(pq)apaqbpbq.二、探索新知(一)探索法则根据乘法分配律,我们也能得到下面等式:在学生发言的基础上,教师总结多项式与多项式的乘法法则并板书法则让学生体会法则的理论依据:乘法对加法的分配律多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加(二)例题讲解与巩固练习1教材例6计算:(1)(3x1)(x2);(2)(x8y)(xy);(3)(xy)(x2xyy2)练习点评:根据学生的具体情况,教师可选择其中几题,分析并板书示范,其余几题,可由学生独

16、立完成在讲解、练习过程中,提醒学生对法则的灵活、正确应用,注意符号,不要漏乘注意一定要用第一个多项式的每一项依次去乘第二个多项式的每一项,在计算时要注意多项式中每个单项式的符号三、课堂小结指导学生总结本节课的知识点,学习过程的自我评价主要针对以下方面:1多项式多项式2多项式与多项式的乘法用一个多项式中的每项乘另一个多项式的每一项,不要漏项在没有合并同类项之前,两个多项式相乘展开后的项数应是这两个多项式项数之积四、布置作业教材第102页练习题本节课由计算绿地面积出发,通过几种不同的计算图形面积方法,得出多项式相乘的法则,整个教学过程的主线和重点定在学生如何自主地探索多项式乘法法则的过程以及如何熟

17、练运用法则解决问题,充分调动了学生学习的积极性教师不仅是教给学生知识,还要重视学习方法的指导和培养11112 2与三角形有关的角与三角形有关的角11112.22.2三角形的外角三角形的外角1了解三角形的外角2知道三角形的外角等于与它不相邻的两个内角的和3学会运用简单的说理来计算三角形相关的角重点三角形外角的性质难点运用三角形外角性质进行有关计算时能准确地推理一、复习引入什么是三角形的内角?它是由什么组成的?三角形内角和定理的内容是什么?教师提出问题,学生举手回答问题二、探究新知1探究三角形外角的概念教师布置学生自学教材第14页最后一段话的内容,然后完成以下问题:(1)举例说明什么是三角形的外角

18、(上黑板画图说明)(2)如图,ADB,BPC,BDC,DPC分别是哪个三角形的外角?2探究三角形外角的性质老师布置学生自学教材第15页思考的内容,然后同学间进行交流、讨论,归纳三角形的外角有什么性质,并提出以下问题:你能否用证明的方法说明你所归纳的性质?学生归纳得出三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和三、举例分析例1如图,BAE,CBF,ACD是ABC的三个外角,它们的和是多少?教师出示教材例4,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角,然后师生共同写出规范的解答过程解:由三角形的一个外角等于与它不相邻的两个内角的和,得BAE23,CB

19、F13,ACD12.所以BAECBFACD2(123)由123180,得BAECBFACD2180360.四、练习与小结练习:教材练习教师布置练习,学生举手回答小结:谈谈你对三角形外角的认识教师引导学生谈谈对三角形外角的认识主要从定义和性质两个方面入手五、布置作业习题11.2第5,6,8题,选做题:第11题通过三角形的内角和回顾引入,然后通过学生的预习,在他们的理解基础上,去学习三角形的外角的定义,这样能够加深他们对外角定义的理解,在探索三角形外角定理的时候,我也是采取了学生去探索的思想,让他们自己大胆猜想,然后同学们在老师的引导下去证明自己的猜想,这样以后才能运用自如11112 2与三角形有

20、关的角与三角形有关的角11112.22.2三角形的外角三角形的外角1了解三角形的外角2知道三角形的外角等于与它不相邻的两个内角的和3学会运用简单的说理来计算三角形相关的角重点三角形外角的性质难点运用三角形外角性质进行有关计算时能准确地推理一、复习引入什么是三角形的内角?它是由什么组成的?三角形内角和定理的内容是什么?教师提出问题,学生举手回答问题二、探究新知1探究三角形外角的概念教师布置学生自学教材第14页最后一段话的内容,然后完成以下问题:(1)举例说明什么是三角形的外角(上黑板画图说明)(2)如图,ADB,BPC,BDC,DPC分别是哪个三角形的外角?2探究三角形外角的性质老师布置学生自学

21、教材第15页思考的内容,然后同学间进行交流、讨论,归纳三角形的外角有什么性质,并提出以下问题:你能否用证明的方法说明你所归纳的性质?学生归纳得出三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和三、举例分析例1如图,BAE,CBF,ACD是ABC的三个外角,它们的和是多少?教师出示教材例4,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角,然后师生共同写出规范的解答过程解:由三角形的一个外角等于与它不相邻的两个内角的和,得BAE23,CBF13,ACD12.所以BAECBFACD2(123)由123180,得BAECBFACD2180360.四、练习与小结练习:教材练习教师布置练习,学生举手回答小结:谈谈你对三角形外角的认识教师引导学生谈谈对三角形外角的认识主要从定义和性质两个方面入手五、布置作业习题11.2第5,6,8题,选做题:第11题通过三角形的内角和回顾引入,然后通过学生的预习,在他们的理解基础上,去学习三角形的外角的定义,这样能够加深他们对外角定义的理解,在探索三角形外角定理的时候,我也是采取了学生去探索的思想,让他们自己大胆猜想,然后同学们在老师的引导下去证明自己的猜想,这样以后才能运用自如

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(线段的垂直平分线的性质和判定-(优质课)获奖课件-(优质课)获奖课件.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|