1、人教版八年级(上)期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题3分,共48分)1下列图形中,不是轴对称图形的是( )2下列根式中是最简二次根式的是( )A B C D3下列各数中,没有平方根的是( )A B C D4下列运算结果正确的是( )A B C D5若代数式 在实数范围内有意义,则x的取值范围是( )A B C D6解分式方程 ,去分母得( )A B C D7已知等腰三角形的两边x,y满足 ,则等腰三角形的周长为( )A16 B12 C20 D20或168下列二次根式中,与 可以合并的根式是( )A B C D9如图,已知AB=AD,那么添加下列一个条件后,仍无法判定
2、ABCADC的是( )ACB=CD BBAC=DAC CBCA=DCA DB=D=9010如图是一个以O为对称中心的中心对称图形,若A=30, C=90,OC=1,则AB的长为( )A2 B4 C D11如图,ABFC,E是DF的中点,若AB=20,CF=12,则BD等于( )A12 B8 C6 D1012已知,则 的值为( )A10 B8 C6 D413如图,在ABC中,AB=AC,A=20,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则ADB=( )A100 B160 C80 D2014如图,ABC的面积为6,AC=3,现将ABC沿AB所在直线翻折,使点C落在直线AD上的C处,
3、P为直线AD上的一点,则线段BP的长不可能是( )A3 B4 C5.5 D1015如图,ABC的顶点A,B,C在连长为1的正方形网格的格点上,BDAC于点D,则BD的长为( )A B C D16如图,ABC的面积为10,BP是ABC的平分线,APBP于P,则PBC的面积为( )A4 B5 C6 D7二、填空(每小题3分,共12分)17化简: 的结果为 .18已知的平方根是,则m= .19若 ,则代数式 的值是 .20如图,RtABC中,B=90,AB=8cm,BC=6cm,D点从A出发以每秒1cm的速度向B点运动,当D点运动到AC的中垂线上时,运动时间为 秒.三、(共12分)21.(1)化简,
4、再求值:,其中.(2)计算:.四、(本题8分)22.如图,在ABC中,AB=AC=8cm.(1)作AB的垂直平分线,交AC于点M,交AB于点N;(尺规作图,保留作图痕迹)(2)在(1)的条件下,连接MB,若MBC的周长是14cm,求BC的长.五、(本题8分)23.某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买的笔记本比打折前多10本.(1)请利用分工方程求出每本笔记本原来的标价;(2)恰逢文具店周年庆典,每本笔记本可以按原价打8折,这样该校最多可购入多少笔记本?六、(8分)24.如图,在ABC和DCB中,A=D=90,AC=BD,AC与BD相交于点O.
5、(1)求证:ABCDCB;(2)OBC是何种三角形?证明你的结论.七、(12分)25.先阅读,再解答由 可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如: ,请完成下列问题:(1)的有理化因式是 ;(2)化去式子分母中的根号: , .(3) (填或)(4)利用你发现的规律计算下列式子的值:八、(12分)26.已知:如图,RtABC中,C=90,AC=6,AB=10.(1)求BC的长;(2)有一动点P从点C开始沿CBA方向以1cm/s的速度运动到点A后停止运动,设运动时间为t秒;求:当
6、t为几秒时,AP平分CAB;当t为几秒时,ACP是等腰三角形(直接写答案).八年级数学答案(2019.1)一:ADABD ACDCB BAAACB二:17. 18.7 19.2000 20. 21.(1)解:(),=,2分=,3分=,4分=5分当a=+2时,原式=1+27分(结果没化简的扣1分)(2)解:原式=52+32+110分=7212分22. 解:(1)如图所示:3分(2)MN是AB的垂直平分线,AM=BM,5分MBC的周长是14cm,MB+MC+BC=AM+CM+BC=AC+BC=14cm,6分AC=8cm,BC=6cm8分23. 解:(1)设每本笔记本原来标价为x元,则打折后售价为0
7、.9x元, 由题意得:+10=,3分 解得:x=4,5分 经检验,x=4是原方程的根答:每本笔记本原来标价为4元;6分(不检验的扣1分)(2)购入笔记本的数量为:360(40.8)=112.5故该校最多可购入112本笔记本8分(方法正确就得分)24. 证明:(1)在ABC和DCB中,A=D=90AC=BD,BC为公共边,RtABCRtDCB(HL)3分(2)OBC是等腰三角形RtABCRtDCBACB=DBC5分OB=OC7分OBC是等腰三角形8分(注:只要后面证出是等腰三角形,前面没写也不扣分)25. (1) +1 ;2分(2) , 3+ ;6分(3)8分 (4) 原式=(1+)(+1).9
8、分=(1)().10分=20181.11分(注:的平方,没加括号的扣1分)=201712分26. 解:(1)RtABC中,C=90,AC=6,AB=10,BC=8;2分(2)如图1所示,过点P作PDAB于点D,AP平分CAB,PD=PC3分在RtAPD与RtAPC中,RtAPDRtAPC(HL),AD=AC=6,4分BD=106=45分设PC=x,则PB=8x,在RtBPD中,PD2+BD2=PB2,即x2+42=(8x)2,7分解得x=3,当t=3秒时,AP平分CAB;8分(注:孩子们没在答题卡上画图,但是思路解题过程完全正确的扣1分)(3)t=6或t=10.8或t=12或t=1312分(写
9、对1个得1分)注:老师们要仔细阅卷,对孩子们的不同做法要认真分析对错。八年级上册数学期末考试试题(答案)一、填空题:(每小题3分,共30分)1科学家发现一种病毒的直径为0.000104米,用科学记数法表示为 米2当x 时,分式有意义3分解因式:4m216n2 4计算: 5如图,ADBC,BDCD,点C在AE的垂直平分线上,已知BD2,AB4,则DE 6x+3,则x2+ 7当x 时,分式的值为正8已知:如图,RtABC中,BAC90,ABAC,D是BC的中点,AEBF若BC8,则四边形AFDE的面积是 9等腰三角形一腰上的高与另一腰的夹角为30,则它的顶角为 10如图,第1个图形有1个三角形,第
10、2个图形中有5个三角形,第3个图形中有9个三角形,则第2019个图形中有 个三角形二、选择题:(每小题3分,共30分)11下列运算正确的是()Aa2a3a6B(2a)22a2C(a2)3a6D(a+1)2a2+112下列图形中,是轴对称图形的是()ABCD13若关于x的方程无解,则m的值是()A3B2C1D114在,3xy+y2,分式的个数为()A2B3C4D515若把分式中的x和y都扩大2倍,则分式的值()A扩大2倍B缩小4倍C缩小2倍D不变16下列二次根式中最简二次根式是()ABCD17若x2+kx+9是完全平方式,则k的值是()A6B6C9D6或618八年级学生去距学校10千米的博物馆参
11、观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍设骑车学生的速度为x千米/小时,则所列方程正确的是()A20B20CD19如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使ADBE,AE与CD交于点F,AGCD于点G,则()AB2CD20如图,AOB120,OP平分AOB,且OP2若点M,N分别在OA,OB上,且PMN为等边三角形,则满足上述条件的PMN有()A2个B3个C4个D无数个三、简答题:(共60分21(8分)计算(1)4(x+y)(xy)(2xy)2(2)(+)()22(5分)解方程:+23(5分)
12、先化简,再求值:,其中x24(7分)ABC在平面直角坐标系中的位置如图A、B、C三点在格点上(1)作出ABC关于x轴对称的A1B1C1,并写出点C1的坐标 ;(2)在y轴上找点D,使得AD+BD最小,作出点D并写出点D的坐标 25(7分)已知3,求的值26(8分)已知a,b,c都是实数,且满足(2a)2+0,且ax2+bx+c0,求代数式3x2+6x+1的值27(10分)欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2
13、天(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?28(10分)已知ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,EDEC(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+ACCD;(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;(3)当点E在BA的延长线上,点D在BC的延长线上时(如图3),请直接写出AE、AC和CD的数量关系参考答案
14、一、填空题1科学家发现一种病毒的直径为0.000104米,用科学记数法表示为1.04104米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定解:0.0001041.04104,故答案为:1.04104【点评】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2当x时,分式有意义【分析】根据,分式有意义,可得答案解:由题意,得3x+50,解得x,故答案为:【点评】本题考查了分式有意义的条件,利用
15、分母不能为零得出不等式是解题关键3分解因式:4m216n24(m+2n)(m2n)【分析】原式提取4后,利用平方差公式分解即可解:原式4(m+2n)(m2n)故答案为:4(m+2n)(m2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键4计算:【分析】先化简,再进一步合并同类二次根式即可解:原式【点评】此题考查二次根式的加减,注意先化简再合并5如图,ADBC,BDCD,点C在AE的垂直平分线上,已知BD2,AB4,则DE6【分析】因为ADBC,BDDC,点C在AE的垂直平分线上,由垂直平分线的性质得ABACCE,即可得到结论解:ADBC,BDDC,ABA
16、C;又点C在AE的垂直平分线上,ACEC,ABACCE5;BDCD3,DECD+CE2+46,故答案为6【点评】本题主要考查线段的垂直平分线的性质等几何知识,利用线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键6x+3,则x2+7【分析】直接利用完全平方公式将已知变形,进而求出答案解:x+3,(x+)29,x2+29,x2+7故答案为:7【点评】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键7当x且x0时,分式的值为正【分析】同号为正,异号为负分母0解:分式的值为正,即0,解得x,因为分母不为0,所以x0故当x且x0时,分式的值为正【点评】由于该类型的题易忽略分母
17、不为0这个条件,所以常以这个知识点来命题8已知:如图,RtABC中,BAC90,ABAC,D是BC的中点,AEBF若BC8,则四边形AFDE的面积是8【分析】连接AD,求出DAEDBF,得到四边形AFDE的面积SABDSABC,于是得到结论解:连接AD,RtABC中,BAC90,ABAC,BC45,ABAC,DBCD,DAEBAD45,BADB45,ADBD,ADB90,在DAE和DBF中,DAEDBF(SAS),四边形AFDE的面积SABDSABC,BC8,ADBC4,四边形AFDE的面积SABDSABC848,故答案为:8【点评】本题主要考查了全等三角形的判定和等腰三角形的判定考查了学生综
18、合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键9等腰三角形一腰上的高与另一腰的夹角为30,则它的顶角为60或120【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论解:当高在三角形内部时,顶角是120;当高在三角形外部时,顶角是60故答案为:60或120【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120一种情况,把三角形简单的认为是锐角三角形因此此题属于易错题10如图,第1个图形有1个三角形,第
19、2个图形中有5个三角形,第3个图形中有9个三角形,则第2019个图形中有8073个三角形【分析】根据题目中的图形,可以发现三角形个数的变化规律,从而可以解答本题解:由图可得,第1个图形有1个三角形,第2个图形中有1+45个三角形,第3个图形中有1+4+41+429个三角形,则第2019个图形中有:1+4(20191)8073个三角形,故答案为:8073【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中的三角形个数的变化规律,利用数形结合的思想解答二、选择题:(每小题3分,共30分)11下列运算正确的是()Aa2a3a6B(2a)22a2C(a2)3a6D(a+1)2a2+1【分
20、析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、幂的乘方运算法则、完全平方公式分别计算得出答案解:A、a2a3a5,故此选项错误;B、(2a)24a2,故此选项错误;C、(a2)3a6,正确;D、(a+1)2a2+2a+1,故此选项错误;故选:C【点评】此题主要考查了同底数幂的乘法运算以及积的乘方运算、幂的乘方运算、完全平方公式等知识,正确掌握运算法则是解题关键12下列图形中,是轴对称图形的是()ABCD【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进
21、而得出答案解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误故选:B【点评】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合13若关于x的方程无解,则m的值是()A3B2C1D1【分析】方程两边都乘以最简公分母(x1)把分式方程化为整式方程,再根据方程无解,最简公分母等于0求出x的值吗,然后代入整式方程进行计算即可得解解:方程两边都乘以(x1)得,m1x0,分式方程无解,x10,解得x1,m110,解得m2故选:B【点评】本题考查了分式方程的解,通常方法是:(1)把分式方程化为整式方程,(2)根
22、据分式方程无解,最简公分母等于0求出x的值,(3)把求出的x的值代入整式方程求解得到所求字母的值14在,3xy+y2,分式的个数为()A2B3C4D5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式解:分式有:,共2个故选:A【点评】本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数15若把分式中的x和y都扩大2倍,则分式的值()A扩大2倍B缩小4倍C缩小2倍D不变【分析】利用分式的基本性质求解即可判定解:分式中的x和y都扩大2倍,得故选:D【点评】本题主要考查了分式的基本性质,解题的关键是熟记分式的基本性质16下列二次根式中
23、最简二次根式是()ABCD【分析】直接利用最简二次根式的定义分析得出答案解:A、2,故此选项错误;B、,故此选项错误;C、,是最简二次根式,故此选项正确;D、|mn|,故此选项错误;故选:C【点评】此题主要考查了最简二次根式,正确把握定义是解题关键17若x2+kx+9是完全平方式,则k的值是()A6B6C9D6或6【分析】本题是完全平方公式的应用,这里首末两项是x和9这两个数的平方,那么中间一项为加上或减去x和9乘积的2倍解:x2+kx+9是一个完全平方式,这两个数是x和3,kx23x6x,解得k6故选:D【点评】本题考查的是完全平方公式,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主
24、要结构特征,本题要熟记完全平方公式,注意积的2倍的符号,有正负两种情况,避免漏解18八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍设骑车学生的速度为x千米/小时,则所列方程正确的是()A20B20CD【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的解:由题意可得,故选:C【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相
25、应的方程19如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使ADBE,AE与CD交于点F,AGCD于点G,则()AB2CD【分析】根据等边三角形性质得出ACAB,BACB60,证ABECAD,推出BAEACD求出AFDBAC60求出FAG30,即可求出答案证明:ABC是等边三角形,ACAB,BACB60,在ABE和CAD中ABECAD (SAS),BAEACD,AFDCAE+ACDCAE+BAEBAC60,AGCD,AGF90,FAG30,sin30,即【点评】本题考查了全等三角形的性质和判定等边三角形性质,特殊角的三角函数值,含30度角的直角三角形性质的应用,主要考查学生
26、的推理能力20如图,AOB120,OP平分AOB,且OP2若点M,N分别在OA,OB上,且PMN为等边三角形,则满足上述条件的PMN有()A2个B3个C4个D无数个【分析】如图在OA、OB上截取OEOFOP,作MPN60,只要证明PEMPON即可推出PMN是等边三角形,由此即可得结论解:如图在OA、OB上截取OEOFOP,作MPN60OP平分AOB,EOPPOF60,OPOEOF,OPE,OPF是等边三角形,EPOP,EPOOEPPONMPN60,EPMOPN,在PEM和PON中,PEMPON(ASA)PMPN,MPN60,PNM是等边三角形,只要MPN60,PMN就是等边三角形,故这样的三角
27、形有无数个故选:D【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型三、简答题:(共60分21(8分)计算(1)4(x+y)(xy)(2xy)2(2)(+)()【分析】(1)根据平方差和完全平方公式计算即可;(2)根据二次根式的加减法的法则计算即可解:(1)4(x+y)(xy)(2xy)24(x2y2)(4x24xy+y2)4x24y24x2+4xyy24xy5y2;(2)(+)()2+3+【点评】本题考查了二次根式的加减法,完全平方公式,平方差公式,熟记法则和乘法公式是解题的关键,22(5分)解方
28、程: +【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解:去分母得:3x2x4+6,解得:x2,经检验x2是增根,分式方程无解【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验23(5分)先化简,再求值:,其中x【分析】根据分式的运算法则即可求出答案解:由于x2原式【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型24(7分)ABC在平面直角坐标系中的位置如图A、B、C三点在格点上(1)作出ABC关于x轴对称的A1B1C1,并写出点C1的坐标(3,2);(2)在y轴上找点D,使得AD+BD最小,作出点
29、D并写出点D的坐标(0,2)【分析】(1)根据网格结构找出点A、B、C关于x轴的对称的A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标;(2)确定出点B关于y轴的对称点B,根据轴对称确定最短路线问题连接AB,与y轴的交点即为所求的点D,然后求出OD的长度,再写出坐标即可解:(1)A1B1C1如图所示,C1(3,2);(2)点D如图所示,OD2,所以,点D的坐标为(0,2)故答案为:(3,2);(0,2)【点评】本题考查了利用轴对称变换作图,利用轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键25(7分)已知3,求的值【分析】由题意可知:ba
30、3ab,然后整体代入原式即可求出答案解:由题意可知:ba3ab,ab3ab原式【点评】本题考查分式的值,解题的关键是由题意得出ab3ab,本题属于基础题型26(8分)已知a,b,c都是实数,且满足(2a)2+0,且ax2+bx+c0,求代数式3x2+6x+1的值【分析】利用非负数的性质求出a,b,c的值,代入已知等式求出x2+2x的值,原式变形后代入计算即可求出值解:(2a)2+|c+8|0,a2,b4,c8,代入ax2+bx+c0得:2x2+4x80,即x2+2x40,x2+2x4,则3x2+6x+13(x2+2x)+112+113【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算
31、法则是解本题的关键27(10分)欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?【分析】(1)设乙工程队每天能完成的绿化面积为x平方米,则甲工程队每天能完成的绿化面积为2x平方米,根据工作时间工作总量
32、工作效率结合甲队比乙队少用2天,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设应安排甲工程队工作y 天,则乙工程队工作(482y)天,根据总费用0.4甲工程队工作天数+0.25乙工程队工作天数结合总费用不超过10万元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最小值即可解:(1)设乙园林队每天能完成绿化的面积为x平方米,则甲园林队每天能完成绿化的面积为2x平方米,根据题意得:2,解得:x200,经检验,x200是原分式方程的解,当x200时,2x400;答:甲、乙两园林队每天能完成绿化的面积分别是400平方米和200平方米;(2)设欧城物业应安排甲园林队工
33、作y天,则乙园林队工作(482y)天,根据题意得:0.4y+0.25(482y)10,解得:y20,y的最小值为20答:甲工程队至少应工作20天【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列出一元一次不等式28(10分)已知ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,EDEC(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+ACCD;(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;(3)当点E在BA的延长线上,点D在B
34、C的延长线上时(如图3),请直接写出AE、AC和CD的数量关系【分析】(1)在CD上截取CFAE,连接EF运用“AAS”证明ECFEDB得AEBD,从而得证;(2)在BC的延长线上截取CFAE,连接EF同理可得AE、AC和CD的数量关系;(3)同(2)的探究过程可得AE、AC和CD的数量关系(1)证明:在CD上截取CFAE,连接EFABC是等边三角形,ABC60,ABBCBFBE,BEF为等边三角形EBDEFC120又EDEC,DECFEDBECF (AAS)CFBDAEBDCDBC+BD,BCAC,AE+ACCD;(2)解:在BC的延长线上截取CFAE,连接EF同(1)的证明过程可得AEBD
35、CDBCBD,BCAC,ACAECD;(3)解:AEACCD(在BC的延长线上截取CFAE,连接EF证明过程类似(2)【点评】此题考查全等三角形的判定与性质及等边三角形的性质,运用了类比的数学思想进行探究,有利于培养分散思维习惯和举一反三的能力八年级(上)期末考试数学试题【含答案】一、选择题(本题共16分,每小题2分)14的平方根是()A2B2C2D162若二次根式有意义,则x的取值范围是()AxBxCxDx53下列事件中,属于必然事件的是()A随时打开电视机,正在播天气预报B抛掷一枚质地均匀的骰子,出现4点朝上C从分别写有3,6两个数字的两张卡片中随机抽出一张,卡片上的数字能被3整除D长度分
36、别是3cm,3cm,6cm的三根木条首尾相接,组成一个三角形4下列各式中,最简二次根式是()ABCD5如图,数轴上点P表示的数可能是()ABCD6等腰三角形有一个外角是110,则其顶角度数是()A70B70或40C40D110或407如图,ABCDEF,DF和AC,FE和CB是对应边若A100,F46,则DEF等于()A100B54C46D348已知实数x、y满足6y+90和axy3xy,则a的值是()ABCD二、填空题(本题共16分,每小题2分)9 10在,0.6,这五个实数中,无理数是 11若分式的值为0,则x的值为 12已知ykx+b,其中y,k,x均不等于零,用y,b,x表示k,则k
37、13如图,ACAD,12,只添加一个条件使ABCAED,你添加的条件是 14某园林公司增加了人数和挖坑机进行园林绿化,现在平均每天比原计划多植树30棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,则根据题意列出的方程是 15如图,在ABC中,C90,AD平分CAB,BC11cm,BD7cm,那么点D到直线AB的距离是 cm16如图,在66正方形网格(每个小正方形的边长为1cm)中,网格线的交点称为格点,ABC的顶点都在格点处,则AC边上的高的长度为 cm三、解答题(本题共68分,第17-24题,每小题5分,第25-26题,每小题5分,第27,28
38、题,每小题5分)17(5分)计算:18(5分)计算:19(5分)解方程:20(5分)下面是小晶设计的“作互相垂直的两条直线”的尺规作图过程作法:如图,在平面内任选一点O,作射线OA,OB;以O为圆心,以任意长为半径作弧,分别交OA于点C,交OB于点D;分别以C,D为圆心,以大于CD的同样长为半径作弧,两弧交于AOB内部一点P;连接CP、PD;作直线OP,作直线CD,两直线相交于点E;则直线CD与OP就是所求作的互相垂直的两条直线根据小晶设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:OC ,CP ,OPOPOPCOPDAOPBOPOE是COD的高线
39、( )(填推理的依据)即OECDCD与OP互相垂直21(5分)如图,E是AC上一点,ABCE,ABCD,ACCD求证:BCED22(5分)当x1时,求代数式的值23(5分)已知:如图,ABCD,BAD的角平分线与DC的延长线交于点E求证:DADE24(5分)已知:如图,ABC是等边三角形,D是AB上一点,过点D作BC的平行线交AC于点E求证:ADE为等边三角形25(6分)如图,在ABC中,ABC90,BDAC于点D,E是AC上一点,且DEDA,若AB15,BC20,求EC的长26(6分)阅读下面的解题过程:已知,求代数式的值解:由,取倒数得,4,即2y2+3y1所以4y2+6y12(2y2+3y)12111,则可得1该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知,求的值27(8分)在同一平面内的图形M,N,给出如下定义:P为图形M