《简单的线性规划问题》说课稿(附教学设计).doc

上传人(卖家):刘殿科 文档编号:5884586 上传时间:2023-05-13 格式:DOC 页数:12 大小:163.50KB
下载 相关 举报
《简单的线性规划问题》说课稿(附教学设计).doc_第1页
第1页 / 共12页
《简单的线性规划问题》说课稿(附教学设计).doc_第2页
第2页 / 共12页
《简单的线性规划问题》说课稿(附教学设计).doc_第3页
第3页 / 共12页
《简单的线性规划问题》说课稿(附教学设计).doc_第4页
第4页 / 共12页
《简单的线性规划问题》说课稿(附教学设计).doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、简单的线性规划问题说课稿一、教材分析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策.本节课是学生学习了二元一次不等式(组)所表示的平面区域及直线方程和简单函数的最值的基础上,借助二元一次函数与直线方程间的相互转化和数形结合思想的有关知识求二元一次函数的最值,也是对二元一次不等式(组)表示平面区域的知识升华.本节的教学重点是线性规划问题的图解法.数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节教学内容中蕴含了丰富的属性结合素材,具体表现为:(1)不

2、定方程的解与平面内点的坐标的结合,进而产生了直线的方程.(2)线性目标函数解析式与直线的斜截式方程的结合.(3)线性目标函数的函数值与直线的纵截距的结合.(4)二元一次不等式(组)与为平面内点的坐标的结合.(5)线性目标函数在线性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合.这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础, 使学生从更深层次地理解“以形助数”的作用。线性规划的实际问题的解决需要数学建模,一个正确数学模型的建立要求建模者熟悉规划问题的具体实际内容.对学生来说,上一节课已初步学习利用表格将文字长、数据多的应用问题中的数据进行整理,设

3、未知数,列出线性约束条件;本节课一方面要让学生经历数据整理过程,准确列出约束条件,还要分析数据写出线性目标函数,尝试运用该模型解决实际问题,在多次数学问题解决的全过程中加深对简单线性规划问题数学模型的理解通过本节教学还能使学生学会运用已有的认知结构探求新知的方法.这将使学生在以后的学习数学的过程中遇到困难想办法进行转化,例如以后可能会遇到目标函数为的问题,解决中可以借鉴本节课探索方法.二、教学目标解析1.教学内容的脉络:本节课首先运用尝试计算比较的方法求目标函数的最值,随着可行域的逐步复杂学生思维产生结点,这样让学生经历问题提出的过程.然后引导学生经历知识探究过程,让他们学会运用已有知识探究新

4、问题的方法,引导学生总结一般性的方法,掌握本节的重点.巩固练习中对两个例题都进行了再剖析,结合例1对数形结合思想的运用进行深入体会;针对例2由于作图的误差可能会带来的错解研究对策,同时用两个例题来培养体验数学在建设节约型社会中的作用,品尝学习数学的乐趣和科学严谨的学习态度.2.使学生学会从实际优化问题中抽象、识别出线性规划模型会用图解法求线性目标函数的最大值、最小值. 了解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.教学中不但要教教材,还要教教材中的蕴含的方法.在探究如何求目标函数的最值时,让学生领悟到数形结合思想、化归思想在数学中的应用.在例1的反思中深入体会数学结合思想,培养

5、学生在今后的学习中尝试运用数学思想方法进行思考,养成动手实践的探究新问题的习惯.4.在线性规划问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,经历知识的形成过程.三、教学分析让学生学会求简单的线性规划问题的方法并不困难,但对该问题的探究过程学生存在如下困难:(1)含两个决策变量的函数问题学生没有接触过,其函数值只能用代入法求得,直接求最大值对学生思维的要求跨度太大;(2)二元一次函数化成直线形式不是学生直接能想到的,也就是化归与数学结合的思想学生并不能熟练地应用. (3)学生对数形结合思想的理解往往停留只在表面化,让学生深入理解其作用及如何结合是本节课的难点之一.另外学生对

6、实际生活中的问题转化为线性规划问题的数学建模意识也比较缺乏.教学难点:使让学生经历用图解法求最优解的探索过程;数形结合思想的理解.教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系.四、教法分析新课程倡导学生积极主动、勇于探索的学习方式,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.本节课我以学生为中心,以问题为载体,采用启发、引导、探究相结合的教学方法.(1)设置“问题”情境,激发学生解决问题的欲望,调动学习积极性,在同一游戏背景下,设计富有层次的问题,引领学生思维有条理的深入到问题本质,经历问题的提出、深化变式

7、、解决过程.(2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验. 通过设计探究环节和学生合作交流的活动,学生学会怎样利用原有的知识探究新知.使学生学到知识的同时又学会方法,注重知识的形成过程.(3)在本节应用题教学中,让学生经历“学数学、做数学、用数学”的过程;做到数学原理与解决问题的统一,即帮助学生掌握了知识与方法,也培养了应用意识、形成数学思想.简单的线性规划问题教学设计一、内容与内容解析本节课是普通高中课程标准实验教科书数学人教A版必修5第三章不等式中3.3.2简单的线性规划问题的第一课时. 主要内容是线性规划的相关概念和简单的线

8、性规划问题的解法线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富

9、的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.二、目标和目标解析(一)教学目标1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念.2. 会用图解法求线性目标函数的最大值、最小值.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识.(二)教学目标解析1. 了解线性规划模型的特征:一组决策变量表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值熟悉线性约束条件(不等式组)的几何表征是平面

10、区域(可行域)体会可行域与可行解、可行域与最优解、可行解与最优解的关系2.使学生学会从实际优化问题中抽象、识别出线性规划模型能理解目标函数的几何表征(一组平行直线)能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为画、移、求、答.3.教学中不但要教教材,还要教教材中的蕴含的方法.在探究如何求目标函数的最值时,通过以下几方面让学生领悟数形结合思想、化归思想在数学中的应用.(1)不定方程的解与平面内点的坐标的结合,进而产生了直线的方程.(2)线性目标函数解析式与直线的斜截式方程的结合.(3)线性目标函数的函数值与直线的纵截距的结合.(4)二元一次不等式(

11、组)的解集与可行域的结合.(5)线性目标函数在线性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合.这样就能使学生对数形结合思想的理解更透彻,为以后解析几何的学习和研究奠定基础, 使学生从更深层次理解“以形助数”的作用以及具体方法.4. 在线性规划问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,培养解决运用已有知识解决新问题的能力.三、教学问题诊断分析本节课学生在学习过程中可能遇到以下疑虑和困难:(1)将实际问题抽象成线性规划问题;(2)用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?(3)数

12、形结合思想的深入理解.为此教学中教师要千方百计地为学生创设探究情境,并作合理适度的引导,通过学生的积极主动思考,运用由特殊到一般的研究方法,借助于讨论、动手画图等形式进行深入探究.教师的引导是至关重要的,要做到既能给学生启示又能发展学生思维,让学生通过自己的探究获取直接经验.教学难点:用图解法求最优解的探索过程;数形结合思想的理解.教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系四、教法分析新课程倡导学生积极主动、勇于探索的学习方式,课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和

13、应用意识等.本节课以学生为中心,以问题为载体,采用启发、引导、探究相结合的教学方法.(1)设置“问题”情境,激发学生解决问题的欲望;(2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.(3)在教学中体现“重过程、重情感、重生活”的理念;(4)让学生经历“学数学、做数学、用数学”的过程.五、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,求出目标函数的最值.让学生学会用“

14、数形结合”思想方法建立起代数问题和几何问题间的密切联系六、教学过程(一) 创设情境,激发探究欲望组织学生做选盒子的游戏活动.在下图的方格中,每列(x)与每行(y)的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子?例如: 第一次:分值= (即: 列数+行数)第二次:分值= (即: 行数-列数2)xy0123451243y012345 x1243图1图2师生活动:教师组织学生做选盒子得分的游戏,学生用“运算比较”的方法容易解决老师提出的问题.之后,给出图3,让学生在图中找目标函数的最大

15、值,学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”.引出课题,提出何为线性(即为一次的)?怎么规划(即求函数的最值)?是本节课的研究重点.【设计意图】数学是现实世界的反映.创设学生感兴趣的问题情境,从兴趣解决稍有困难有较大困难,使学生产生急于解决问题的内驱力,同时培养学生从实际问题抽象出数学模型的能力.x1452379101181234Oy图3(二)独思共议,引导探究方法引导学生由特殊到一般分析目标函数的函数值.问题1:当时,求x,y的值.师生活动:学生通过计算找到三个点的坐标,并观察出三点共线,求出直线方程,教师引导学生观察所对应的直线的纵截距.【设计意图】通过特殊问题,帮助学

16、生理解问题的实质:求x,y的值即求不定方程的解.数形结合,将求变量x,y转化成求点的坐标.观察时三个盒子所在点的位置关系及直线的方程,使学生体会b值就是直线的纵截距.问题2在图3中,求的最大值.师生活动:学生在教师的引导下分组讨论,求b的最大值.通过之前教师的引导及学生对上一节“二元一次不等式表示的平面区域”的学习,对学生的讨论结果有两种预案:预案1:学生通过由特殊到一般的分析,将目标函数转化成,x,y在取得每个可行解时,b的取值就是直线过这个点时的纵截距,而所有这些直线都是平行的,因此只需平移直线看纵截距的最大值即可.预案2:根据上一节“二元一次不等式(组)所表示的平面区域”的知识,学生认为

17、b取最大值时x、y的取值一定在直线的右上方的位置,为此就依次在这些位置上画平行于的直线,只要上面有点就不停的画,直至最后一点.师生活动:学生展示讨论结果,教师借助几何画板作演示、分析,渗透转化和数形结合的数学思想.并对学生的结论作出总结,先作直线,再作平移,观察直线的纵截距.【设计意图】由特殊到一般,利用数形结合,寻求解题思路.(三)变式思考,深化探究思路1将目标函数变成, 求b的最大值.师生活动:通过学生将化成的形式,做直线并进行平移,观察纵截距的最大值的回答过程,教师强调解题步骤:画、作、移、求.【设计意图】规范方法并检验学生对方法的理解程度,使学生感受由直线斜率的变化引起使取最大值的过程

18、中点的变化.2将目标函数变成,求b的最大值.师生活动:教师引导学生比较此题和上题的区别,学生发现平移直线时若按上题的方法找纵截距的最大值便会出现问题,通过思考、讨论,找到本题需取截距最小的原因.【设计意图】通过目标函数的不同变式,让学生熟悉求最值的方法,尤其是直线中纵截距的符号为负的情况借助“几何画板”集中呈现目标函数的图形变化,提高课堂效率,建立精准的数形联系(四)规范格式,应用探究成果1例1:(习题3.3A组第3题)电视台应某企业之约播放两套连续剧,其中,连续剧甲每次播放时间为80min,其中广告时间为1min,收视观众为60万;连续剧乙每次播放时间为40min,广告时间为1min,收视观

19、众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min广告,而电视台每周只能为该企业提供不多于320min的节目时间.如果你是电视台的制片人,电视台每周应播映两套连续剧各多少次,才能获得最高的收视率?播放时间(min)广告时间(min)观众人数(万)甲80160乙40120xyO解:设甲播放x次,乙播放y次,收视观众z万人次则.用如下步骤求z的最大值:图(1)画出可行域;(2)作出直线:(3)平移至点A处纵截距最大,即z最大;(4)解方程组: 得,因此.答:甲播放2次,乙播放4次,收视观众最多为200万人次.师生活动:教师引领学生理解题意,让学生继续领会用表格形式描述数据的直观

20、性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题.通过学生板演,教师规范写法,然后借助解题的过程介绍线性目标函数、线性约束条件、可行解、可行域、最优解及线性规划的数学概念.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2反思例1解题过程,深入体会数形结合思想转化师生活动:教师引导学生纵观解题过程,体会在解题中“数”与“形”是怎样结合的,并加以总结.代数 几何线性目标函数 直线线性目标函数的函数值 直线的纵截距线性约束条件(二元

21、一次不等式(组)的解集)可行域线性目标函数的最值 直线的纵截距的最值【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.3例2:(课本例2)营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg食物A含有0.105kg的碳水化合物,0.07kg的蛋白质,0.14kg的脂肪,花费28元; 1kg食物B含有0.105kg的碳水化合物,0.14kg的蛋白质,0.07kg的脂肪,花费21元.为了满足饮食要求,同时使花费最低,需要同时食用食物A和食物B各多少kg?师生活动:学生独自完成此题,由一位同学生展示

22、自己的解题过程和结果.规范解题步骤和格式.MN图5Oxy解:设每天食用xkg食物A,ykg食物B,总成本为z,那么目标函数为.二元一次不等式组等价于 二元一次不等式组所表示的平面区域(图5),即可行域考虑,将它变形为.这里是斜率为,随z变化的一组平行直线,是直线在y轴上的截距,当取最小值时,z的值最小当然直线要与可行域相交,即在满足约束条件时目标函数取得最小值由图5可见,当直线经过可行域上的点M时,截距最小,即z最小解方程组 得M的坐标为,.所以答:每天食用食物A为kg,食物B为kg,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步

23、培养学生的运算能力和准确作图的能力.4反思例2的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.(五) 归纳梳理,体会探究价值由学生和教师共同总结本节课所学到的知识.师生活动:先由学生总结学习的内容,教师作补充说明,尤其是本节课是如何经历的知识探究过程,如何运用化归与数形结合思想得到方法,以及如何通过数学建模解决实际问题.再有

24、教师介绍数学是有用的,通过本节课看到了时间如何合理分配收获最大的问题,如何使消费最少保证饮食健康的问题,还有很多实际应用由学生自己查资料作为拓展作业.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六) 目标检测题1在线性约束条件下,求目标函数的最大值和最小值;目标函数的最大值和最小值;2某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.

展开阅读全文
相关资源
猜你喜欢
  • 第二十一章 圆(上)-总结与复习-教案、教学设计-省级公开课-北京版九年级上册数学(配套课件编号:800fb).doc 第二十一章 圆(上)-总结与复习-教案、教学设计-省级公开课-北京版九年级上册数学(配套课件编号:800fb).doc
  • 第二十章 解直角三角形-解直角三角形-20.5 测量与计算-二次测量-教案、教学设计-部级公开课-北京版九年级上册数学(配套课件编号:52c45).doc 第二十章 解直角三角形-解直角三角形-20.5 测量与计算-二次测量-教案、教学设计-部级公开课-北京版九年级上册数学(配套课件编号:52c45).doc
  • 第十八章 相似形-相似三角形-18.5 相似三角形的判定-相似三角形判定定理一-教案、教学设计-部级公开课-北京版九年级上册数学(配套课件编号:003c4).doc 第十八章 相似形-相似三角形-18.5 相似三角形的判定-相似三角形判定定理一-教案、教学设计-部级公开课-北京版九年级上册数学(配套课件编号:003c4).doc
  • 第二十章 解直角三角形-解直角三角形-20.4 解直角三角形-教案、教学设计-部级公开课-北京版九年级上册数学(配套课件编号:f0bb9).doc 第二十章 解直角三角形-解直角三角形-20.4 解直角三角形-教案、教学设计-部级公开课-北京版九年级上册数学(配套课件编号:f0bb9).doc
  • 第二十章 解直角三角形-锐角三角函数-20.1 锐角三角函数-教案、教学设计-部级公开课-北京版九年级上册数学(配套课件编号:00308).doc 第二十章 解直角三角形-锐角三角函数-20.1 锐角三角函数-教案、教学设计-部级公开课-北京版九年级上册数学(配套课件编号:00308).doc
  • 第十九章 二次函数和反比例函数-二次函数-19.2 二次函数y=ax²+bx+c(a≠0)的图象-二次函数y=a(x-h)²(a≠0)的图象(一)-教案、教学设计-市级公开课-北京版九年级上册数学(配套课件编号:50bef).doc 第十九章 二次函数和反比例函数-二次函数-19.2 二次函数y=ax²+bx+c(a≠0)的图象-二次函数y=a(x-h)²(a≠0)的图象(一)-教案、教学设计-市级公开课-北京版九年级上册数学(配套课件编号:50bef).doc
  • 第十九章 二次函数和反比例函数-二次函数-19.2 二次函数y=ax²+bx+c(a≠0)的图象-二次函数y=ax²+bx+c(a≠0)的图象-教案、教学设计-市级公开课-北京版九年级上册数学(配套课件编号:50259).doc 第十九章 二次函数和反比例函数-二次函数-19.2 二次函数y=ax²+bx+c(a≠0)的图象-二次函数y=ax²+bx+c(a≠0)的图象-教案、教学设计-市级公开课-北京版九年级上册数学(配套课件编号:50259).doc
  • 第十九章 二次函数和反比例函数-总结与复习-教案、教学设计-市级公开课-北京版九年级上册数学(配套课件编号:c02be).docx 第十九章 二次函数和反比例函数-总结与复习-教案、教学设计-市级公开课-北京版九年级上册数学(配套课件编号:c02be).docx
  • 第十九章 二次函数和反比例函数-二次函数-19.4 二次函数的应用-二次函数应用举例(一)-教案、教学设计-部级公开课-北京版九年级上册数学(配套课件编号:8158d).docx 第十九章 二次函数和反比例函数-二次函数-19.4 二次函数的应用-二次函数应用举例(一)-教案、教学设计-部级公开课-北京版九年级上册数学(配套课件编号:8158d).docx
  • 相关搜索
    资源标签

    当前位置:首页 > 办公、行业 > 待归类文档
    版权提示 | 免责声明

    1,本文(《简单的线性规划问题》说课稿(附教学设计).doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
    2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
    3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


    侵权处理QQ:3464097650--上传资料QQ:3464097650

    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


    163文库-Www.163Wenku.Com |网站地图|