1、【压轴题】高三数学下期末试题(附答案)一、选择题1如图所示的组合体,其结构特征是( )A由两个圆锥组合成的B由两个圆柱组合成的C由一个棱锥和一个棱柱组合成的D由一个圆锥和一个圆柱组合成的2( )ABCD3在下列区间中,函数的零点所在的区间为( )ABCD4函数的单调减区间为ABCD5当时, 在同一坐标系中,函数与的图像是( )ABCD6已知,则,不可能满足的关系是()ABCD7已知复数 ,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限8函数的图像如图所示,则函数的图像可能是ABCD9已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A108cm3B
2、100cm3C92cm3D84cm310一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为ABCD11如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A72B64C48D3212渐近线方程为的双曲线的离心率是( )AB1CD2二、填空题13在中,面积为,则_14如图所示,平面BCC1B1平面ABC,ABC120,四边形BCC1B1为正方形,且ABBC2,则异面直线BC1与AC所成角的余弦值为_15如图,用6种不同的颜色给图中的
3、4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答)16能说明“若f(x)f(0)对任意的x(0,2都成立,则f(x)在0,2上是增函数”为假命题的一个函数是_17如图,圆C(圆心为C)的一条弦AB的长为2,则=_18在区间2,4上随机地取一个数x,若x满足|x|m的概率为,则m=_19设函数,若是的极大值点,则a取值范围为_.20在中,若,则_三、解答题21已知曲线C的参数方程为(a参数),以直角坐标系的原点为极点,x正半轴为极轴建立极坐标系.()求曲线C的极坐标方程;()若直线l极坐标方程为,求曲线C上的点到直线l最大距离.2
4、2在平面直角坐标系中,已知直线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.(1)求直线的普通方程与曲线的直角坐标方程;(2)设点.若直与曲线相交于两点,求的值.23十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 ,若 ,则 ; ; .(1)根据频
5、率分布直方图估计50位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ,其中近似为年平均收入 近似为样本方差 ,经计算得:,利用该正态分布,求:(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?24如图在三棱锥中, 分
6、别为棱的中点,已知.求证:(1)直线平面;(2)平面 平面.252016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率求被调查者满意或非常满意该项目的频率;若从该市的全体
7、市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望26如图所示,已知正方体中,分别为,的中点,.求证:(1)四点共面;(2)若交平面于R点,则三点共线.【参考答案】*试卷处理标记,请不要删除一、选择题1D解析:D【解析】【分析】根据圆柱与圆锥的结构特征,即可判定,得到答案.【详解】根据空间几何体的结构特征,可得该组合体上面是圆锥,下接一个同底的圆柱,故选D.【点睛】本题主要考查了空间几何
8、体的结构特征,其中解答熟记圆柱与圆锥的结构特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2B解析:B【解析】【分析】先分别对分子和分母用乘法公式化简,再分子分母同时乘以分母的共轭复数,化简即得最后结果.【详解】由题意得,复数故应选B【点睛】本小题主要考查复数的乘法和除法的运算,乘法的运算和实数的运算类似,只需要记住.除法的运算记住的是分子分母同时乘以分母的共轭复数,这一个步骤称为分母实数化,分母实数化的主要目的是将分母变为实数,然后将复数的实部和虚部求出来.属于基础题.3C解析:C【解析】【分析】先判断函数在上单调递增,由,利用零点存在定理可得结果.【详解】因为函数在上连续
9、单调递增,且,所以函数的零点在区间内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.4D解析:D【解析】【分析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间.【详解】,所以函数的单调减区间为,故本题选D.【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.5D解析:D【解析】【分析】根据指数型函数和对数型函数单调性,判断出正确选项.【详解】由于,所以为上的递减函数,且过;为上的单调递减函数,且过,故只有D选项符合.故选:D.【点睛】本小题主要考查指
10、数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.6C解析:C【解析】【分析】根据即可得出,根据,即可判断出结果【详解】;,;,故正确;,故C错误;,故D正确故C【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题7A解析:A【解析】在复平面内对应的点坐标为在第一象限,故选A.8D解析:D【解析】原函数先减再增,再减再增,且位于增区间内,因此选D【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原
11、函数的单调区间9B解析:B【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角)据此即可得出体积解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角)该几何体的体积V=663=100故选B考点:由三视图求面积、体积10D解析:D【解析】【分析】旧球个数x=4即取出一个新球,两个旧球,代入公式即可求解【详解】因为从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数为x=4,即旧球增加一个,所以取出的三个球中必有一个新球,两个旧球,所以,故选D【点睛】本题
12、考查离散型随机变量的分布列,需认真分析P(X=4)的意义,属基础题11B解析:B【解析】【分析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。【详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为,故选B。【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体
13、积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。12C解析:C【解析】【分析】本题根据双曲线的渐近线方程可求得,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】根据渐近线方程为xy0的双曲线,可得,所以c则该双曲线的离心率为 e,故选C【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.二、填空题13【解析】【分析】由已知利用三角形面积公式可求c进而利用余弦定理可求a的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在解
14、析:【解析】【分析】由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】,面积为,解得,由余弦定理可得:,所以,故答案为:【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.14【解析】【分析】将平移到和相交的位置解三角形求得线线角的余弦值【详解】过作过作画出图像如下图所示由于四边形是平行四边形故所以是所求线线角或其补角在三角形中故【点睛】本小题主要考查空间两条直线所成角的解析:【解析】【分析】将平移到和相交的位置,解三角形求得线线角的余弦值.【详解】过作,过作,画出图像如下图所示,由于四边
15、形是平行四边形,故,所以是所求线线角或其补角.在三角形中,故.【点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.15390【解析】【分析】【详解】用2色涂格子有种方法用3色涂格子第一步选色有第二步涂色共有种所以涂色方法种方法故总共有390种方法故答案为:390解析:390【解析】【分析】【详解】用2色涂格子有种方法,用3色涂格子,第一步选色有,第二步涂色,共有种,所以涂色方法种方法,故总共有390种方法.故答案为:39016y=sinx(答案不唯一)【解析】分析:举的反例要否定增函数可以取一个分段函数使得f(x)f(0)且(02上是减函数详解:令则
16、f(x)f(0)对任意的x(02都成立但f(x)在02上不解析:y=sinx(答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f(x)f(0)且(0,2上是减函数.详解:令,则f(x)f(0)对任意的x(0,2都成立,但f(x)在0,2上不是增函数.又如,令f(x)=sinx,则f(0)=0,f(x)f(0)对任意的x(0,2都成立,但f(x)在0,2上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合中的一个特殊值,使不成立即可.通常举分段函数.172【解析】【分析】过点C作CDAB于D可得RtACD中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值
17、【详解】过点C作CDAB于D则D为AB的中点RtACD中可得cosA=2故答解析:2【解析】【分析】过点C作CDAB于D,可得,RtACD中利用三角函数的定义算出 ,再由向量数量积的公式加以计算,可得的值【详解】过点C作CDAB于D,则D为AB的中点RtACD中,可得cosA=2故答案为2【点睛】本题已知圆的弦长,求向量的数量积着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题183【解析】【分析】【详解】如图区间长度是6区间24上随机地取一个数x若x满足|x|m的概率为若m对于3概率大于若m小于3概率小于所以m=3故答案为3解析:3【解析】【分析】【详解】如图
18、区间长度是6,区间2,4上随机地取一个数x,若x满足|x|m的概率为,若m对于3概率大于,若m小于3,概率小于,所以m=3故答案为319【解析】试题分析:的定义域为由得所以若由得当时此时单调递增当时此时单调递减所以是的极大值点;若由得或因为是的极大值点所以解得综合:的取值范围是故答案为考点:1利用导数研究函数的单调性;2利用解析:【解析】试题分析:的定义域为,由,得,所以.若,由,得,当时,此时单调递增,当时,此时单调递减,所以是的极大值点;若,由,得或.因为是的极大值点,所以,解得,综合:的取值范围是,故答案为.考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值.201【解析】【
19、分析】由题意利用余弦定理得到关于AC的方程解方程即可确定AC的值【详解】由余弦定理得解得或(舍去)【点睛】本题主要考查余弦定理解三角形的方法方程的数学思想等知识意在考查学生的转化能力和计解析:1【解析】【分析】由题意利用余弦定理得到关于AC的方程,解方程即可确定AC的值.【详解】由余弦定理得,解得或(舍去).【点睛】本题主要考查余弦定理解三角形的方法,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21(1)(2)【解析】【分析】(1)利用平方和为1消去参数得到曲线C的直角坐标方程,再利用,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,
20、加上半径即可得到最大距离.【详解】(1)由,得,两式两边平方并相加,得,所以曲线表示以为圆心,2为半径的圆.将代入得,化简得所以曲线的极坐标方程为(2)由,得,即,得所以直线的直角坐标方程为因为圆心到直线 的距离,所以曲线上的点到直线的最大距离为.【点睛】本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题.22(1),;(2).【解析】【分析】(1)利用代入法消去参数方程中的参数可求直线的普通方程,极坐标方程展开后,两边同乘以,利用 ,即可得曲线的直角坐标方程;(2)直线的参数方程代入圆的直角坐标方程,利用韦达定理、直线参数方程的几何意义即可得结果.
21、【详解】(1)将直线l的参数方程消去参数t并化简,得直线l的普通方程为.将曲线C的极坐标方程化为.即.x2+y2=2y+2x.故曲线C的直角坐标方程为. (2)将直线l的参数方程代入中,得.化简,得. 0,此方程的两根为直线l与曲线C的交点A,B对应的参数t1,t2.由根与系数的关系,得,即t1,t2同正. 由直线方程参数的几何意义知,.【点睛】本题主要考查参数方程和普通方程的转化、极坐标方程和直角坐标方程的转化以及直线参数方程的应用,属于中档题. 消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:代入消元法;加减消元法;乘除消元法;三角恒等式消元法;极坐标方程化为直角坐
22、标方程,只要将和换成和即可.23(1)17.4;(2)(i)14.77千元(ii)978位【解析】【分析】(1)用每个小矩形的面积乘以该组中点值,再求和即可得到平均数;(2)(i)根据正态分布可得:即可得解;(ii)根据正态分布求出每个农民年收入不少于12.14千元的事件概率为0.9773,利用独立重复试验概率计算法则求得概率最大值的k的取值即可得解.【详解】(1)由频率分布直方图可得:;(2)(i)由题,所以满足题意,即最低年收入大约14.77千元;(ii),每个农民年收入不少于12.14千元的事件概率为0.9773,记这1000位农民中的年收入不少于12.14千元的人数为X,恰有k位农民中
23、的年收入不少于12.14千元的概率得,所以当时,当时,所以这1000位农民中的年收入不少于12.14千元的人数最有可能是978位.【点睛】此题考查频率分布直方图求平均数,利用正态分布估计概率,结合独立重复试验计算概率公式求解具体问题,综合性强.24(1)证明见解析;(2)证明见解析【解析】【分析】(1)本题证明线面平行,根据其判定定理,需要在平面内找到一条与平行的直线,由于题中中点较多,容易看出,然后要交待在平面外,在平面内,即可证得结论;(2)要证两平面垂直,一般要证明一个平面内有一条直线与另一个平面垂直,由(1)可得,因此考虑能否证明与平面内的另一条与相交的直线垂直,由已知三条线段的长度,
24、可用勾股定理证明,因此要找的两条相交直线就是,由此可得线面垂直.【详解】(1)由于分别是的中点,则有,又平面,平面,所以平面(2)由(1),又,所以,又是中点,所以,又,所以,所以,是平面内两条相交直线,所以平面,又平面,所以平面平面【考点】线面平行与面面垂直25(1);(2);(3).【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是,根据独立重复试验次发生次的概率公式可得结果;(3)随机变量的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得
25、分布列,根据期望公式可得结果.试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在的频率为:;(2)根据频率分布直方图,被调查者非常满意的频率是,用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人非常满意该项目的概率为,现从中抽取3人恰有2人非常满意该项目的概率为:;(3)评分低于60分的被调查者中,老年人占,又从被调查者中按年龄分层抽取9人,这9人中,老年人有3人,非老年人6人,随机变量的所有可能取值为0,1,2,的分布列为:012的数学期望 .26(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由中位线定理可知,故四点共面(2)是平面与平面的交线,可证是两平面公共点,故过R,得证.【详解】证明:(1)是的中位线,.在正方体中,.确定一个平面,即四点共面.(2)正方体中,设确定的平面为,又设平面为.又,则Q是与的公共点,.又.,且,则,故三点共线.【点睛】本题主要考查了多点共面及多点共线问题,主要利用平面的基本性质解决,属于中档题.