1、24.4 弧长和扇形面积第二十四章 圆第1课时 弧长和扇形面积2023-5-151学习目标1.理解弧长和扇形面积公式的探求过程.(难点)2.会利用弧长和扇形面积的计算公式进行计算.(重点)2023-5-152导入新课导入新课图片欣赏2023-5-153问题1 如图,在运动会的4100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?问题2 怎样来计算弯道的“展直长度”?因为要保证这些弯道的“展直长度”是一样的.导入新课导入新课情境引入2023-5-154讲授新课讲授新课与弧长相关的计算一问题1 半径为R的圆,周长是多少?ORC=2 R问题2 下图中各圆心角所对的弧长分别是
2、圆周长的几分之几?OR180OR90OR45ORn合作探究2023-5-155(1)圆心角是180,占整个周角的 ,因此它所对的弧长是圆周长的_.180360(2)圆心角是90,占整个周角的 ,因此它所对的弧长是圆周长的_.90360(3)圆心角是45,占整个周角的 ,因此它所对的弧长是圆周长的_.45360(4)圆心角是n,占整个周角的 ,因此它所对的弧长是圆周长的_.360n1803609036045360360n 用弧长公式进行计算时,要注意公式中n的意义n表示1圆心角的倍数,它是不带单位的.注意算一算 已知弧所对的圆心角为60,半径是4,则弧长为_.432360180nn RlR知识要
3、点u弧长公式弧长公式2023-5-157例1 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)解:由弧长公式,可得弧AB的长100 9005001570(mm),180l 因此所要求的展直长度l=2700+1570=2970(mm).答:管道的展直长度为2970mm 700mm700mmR=900mm(100 ACBDO2023-5-158OA解:设半径OA绕轴心O逆时针 方向旋转的度数为n.解得 n90因此,滑轮旋转的角度约为90.15.7,180n R一滑轮起重机装置(如图),滑轮的半径r=10cm,当重物上升15.7cm时,
4、滑轮的一条半径OA绕轴心O逆时针方向旋转多少度(假设绳索与滑轮之间没有滑动,取3.14)?练一练2023-5-159圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫作扇形.如图,黄色部分是一个扇形,记作扇形OAB.半径半径OBA圆心角圆心角弧OBA扇形与扇形面积相关的计算二概念学习2023-5-1510下列图形是扇形吗?判一判2023-5-1511合作探究问题1 半径为r的圆,面积是多少?Or2S=r问题2 下图中各扇形面积分别是圆面积的几分之几,具体是多少呢?2023-5-1512圆心角占圆心角占周角的比例周角的比例扇形面积扇形面积占占圆圆面积面积的比例的比例扇形的扇形的面积面积2136
5、0180813604536045360180903609036014=r212pr214pr218Or180Or90Or45Orn360n360n2360nr2023-5-1513扇形面积公式半径为r的圆中,圆心角为n的扇形的面积 公式中n的意义n表示1圆心角的倍数,它是不带单位的;公式要理解记忆(即按照上面推导过程记忆).注意2=360n rS扇形知识要点2023-5-1514 _大小不变时,对应的扇形面积与 _ 有关,_ 越长,面积越大.圆心角半径半径圆的 不变时,扇形面积与 有关,越大,面积越大.圆心角半径 圆心角 总结:扇形的面积与圆心角、半径有关.O ABDCEFO ABCD问题 扇
6、形的面积与哪些因素有关?2023-5-1515问题:扇形的弧长公式与面积公式有联系吗?想一想 扇形的面积公式与什么公式类似?11180221802nrrnrSrlr扇形ABOO类比学习180n rl2=360n rS扇形2023-5-1516例3 如图,圆心角为60的扇形的半径为10cm.求这个扇形的面积和周长.(精确到0.01cm2和0.01cm)OR60解:n=60,r=10cm,扇形的面积为=2+180n rlr26010=360 50=3252.36(cm).扇形的周长为2=180n rS6010=20+180 10=20+330.47(cm).2023-5-15171.已知半径为2c
7、m的扇形,其弧长为 ,则这个扇形的面积S扇扇=432.已知扇形的圆心角为120,半径为2,则这个扇形的面积S扇=.24cm3 43 试一试2023-5-1518例4 如图,水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm)(1)O.BAC 讨论:(1)截面上有水部分的面积是指图上哪一部分?阴影部分.2023-5-1519O.BACD(2)O.BACD(3)(2)水面高0.3 m是指哪一条线段的长?这条线段应该怎样画出来?线段DC.过点O作OD垂直符号于AB并长交圆O于C.(3)要求图中阴影部分面积,应该怎么办?阴影部分面积=扇形
8、OAB的面积-OAB的面积2023-5-1520解:如图,连接OA,OB,过点O作弦AB的垂线,垂足为D,交AB于点C,连接AC.OC0.6,DC0.3,ODOC-DC0.3,ODDC.又 AD DC,AD是线段OC的垂直平分线,ACAOOC.从而 AOD60,AOB=120.O.BACD(3)2023-5-1521有水部分的面积:SS扇形OAB-SOAB2212010.6360210.120.6 3 0.320.22(m)AB ODOBACD(3)2023-5-1522OO弓形的面积=扇形的面积三角形的面积 S弓形=S扇形-S三角形 S弓形=S扇形+S三角形知识要点u弓形的面积公式弓形的面积
9、公式 2023-5-15232.如图,RtABC中,C=90,A=30,BC=2,O、H分别为AB、AC的中点,将ABC顺时针旋转120到A1BC1的位置,则整个旋转过程中线段OH所扫过的面积为()A.BC.D.1.已知弧所对的圆周角为90,半径是4,则弧长为 .当堂练习当堂练习7733847338 433C2ABCOHC1A1H1O12023-5-15243.如图,A、B、C、D两两不相交,且半径都是2cm,则图中阴影部分的面积是 .212 cmABCD2023-5-1525解析:点A所经过的路线的长为三个半径为2,圆心角为120的扇形弧长与两个半径为 ,圆心角为90的扇形弧长之和,即 4.
10、如图,RtABC的边BC位于直线l上,AC ,ACB90,A30.若RtABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为_(结果用含的式子表示)3312029033243(43).180180l (43)2023-5-15265.(例题变式题)如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.OABDCE22=24010.60.3 0.6 336020.240.09 30.91 cm.OABSS弓形扇形S解:2023-5-15276.如图,一个边长为10cm的等边三角形模板ABC在水平桌面上绕顶点C按顺时针
11、方向旋转到ABC的位置,求顶点A从开始到结束所经过的路程为多少.ABABC解 由图可知,由于ACB=60,则等边三角形木板绕点C按顺时针方向旋转了120,即ACA=120,这说明顶点A经过的路程长等于弧AA 的长.等边三角形ABC的边长为10cm,弧AA 所在圆的半径为10cm.l弧AA 1201020(cm).1803 答:顶点A从开始到结束时所经过的路程为20cm.32023-5-1528课堂小结课堂小结弧长计算公式:180n Rl 扇形定义公式2360n RS扇形112SC R扇形阴影部分面积求法:整体思想弓形公式S弓形=S扇形-S三角形 S弓形=S扇形+S三角形割补法2023-5-1529视频:弧长和扇形面积公式的推导2023-5-1530