勾股定理学案(DOC 18页).doc

上传人(卖家):2023DOC 文档编号:5920316 上传时间:2023-05-16 格式:DOC 页数:25 大小:147.50KB
下载 相关 举报
勾股定理学案(DOC 18页).doc_第1页
第1页 / 共25页
勾股定理学案(DOC 18页).doc_第2页
第2页 / 共25页
勾股定理学案(DOC 18页).doc_第3页
第3页 / 共25页
勾股定理学案(DOC 18页).doc_第4页
第4页 / 共25页
勾股定理学案(DOC 18页).doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、课题:18.1勾股定理(第1课时)年月日 执教: 一、学习目标1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。3介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。二、重点:勾股定理的内容及证明。 难点:勾股定理的证明。三、学习准备: 预习课本P2224页四、课堂阅读 1. 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地 球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事

2、实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 2.让学生画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。你是否发现32+42与52的关系,52+122和132的关系,即,那么就有 对于任意的直角三角形也有这个性质吗?五、例习题分析例1(补充)已知:在ABC中

3、,C=90,A、B、C的对边为a、b、c。 求证:a2b2=c2。分析:让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。拼成如图所示,其等量关系为:4S+S小正=S大正 发挥学生的想象能力拼出不同的图形,进行证明。 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2已知:在ABC中,C=90,A、B、C的对边为a、b、c。 求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。六、课堂练习1勾股定理的内容是: 。2如图,直角ABC的主要性质是:C=90,(

4、用几何语言表示)两锐角之间的关系: ;若D为斜边中点,则斜边中线 ;若B=30,则B的对边和斜边: ;三边之间的关系: 。3ABC的三边a、b、c,若满足b2= a2c2,则 =90; 若满足b2c2a2,则B是 角; 若满足b2c2a2,则B是 角。4根据如图所示,利用面积法证明勾股定理。七、课后练习1已知在RtABC中,B=90,a、b、c是ABC的三边,则c= 。(已知a、b,求c)a= 。(已知b、c,求a)3、4、532+42=525、12、1352+122=1327、24、2572+242=2529、40、4192+402=41219,b、c192+b2=c2b= 。(已知a、c,

5、求b)2如下表,表中所给的每行的三个数a、b、c,有abc,试根据表中已有数的规律,写出当a=19时,b,c的值,并把b、c用含a的代数式表示出来。3在ABC中,BAC=120,AB=AC=cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,PA与腰垂直。学习反思:1.本节课你有哪些收获? 2.你还有哪些疑惑?课后作业:p28 1、2、题。课题:18.1勾股定理(第2课时)年月日 执教: 一、学习目标1会用勾股定理进行简单的计算。2树立数形结合的思想、分类讨论思想。二、重点:勾股定理的简单计算。 难点:勾股定理的灵活运用。三、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及

6、变形。学习勾股定理重在应用。四、例习题分析例1(补充)在RtABC,C=90已知a=b=5,求c。已知a=1,c=2, 求b。已知c=17,b=8, 求a。已知a:b=1:2,c=5, 求a。已知b=15,A=30,求a,c。分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。例2(补充)已知直角三角形的两边长分别为5和12,求第三边。 分析:让学生知道考虑问题要全面,体会分类讨论思想。例3(补充)已知:如图,等边ABC的边长是6cm。求等边ABC的高。 求SABC。五、课堂练习1填空题在RtABC,C=90,a=8,b=15,则c= 。在RtABC,B=90,a=3,b=4,

7、则c= 。在RtABC,C=90,c=10,a:b=3:4,则a= ,b= 。一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。已知直角三角形的两边长分别为3cm和5cm,则第三边长为 。已知等边三角形的边长为2cm,则它的高为 ,面积为 。2已知:如图,在ABC中,C=60,AB=,AC=4,AD是BC边上的高,求BC的长。 3已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。六、课后练习1填空题在RtABC,C=90,如果a=7,c=25,则b= 。如果A=30,a=4,则b= 。如果A=45,a=3,则c= 。如果c=10,a-b=2,则b= 。如果a、b、c是连续

8、整数,则a+b+c= 。如果b=8,a:c=3:5,则c= 。2已知:如图,四边形ABCD中,ADBC,ADDC, ABAC,B=60,CD=1cm,求BC的长。学习反思:1.本节课你有哪些收获? 2.你还有哪些疑惑?课后作业:p28 3、4、5题。 课题:18.1勾股定理(第3课时)年月日 执教: 一、学习目标1会用勾股定理解决简单的实际问题。2树立数形结合的思想。二、重点:勾股定理的应用。 难点:实际问题向数学问题的转化。三、课堂引入勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。四、例习题分析

9、例1(教材P25页)例2(教材P25页)五、课堂练习1小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。2如图,山坡上两株树木之间的坡面距离是4米,则这两株树之间的垂直距离是 米,水平距离是 米。 2题图 3题图 4题图3如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。4如图,原计划从A地经C地到B地修建一条高速公路,后因技术攻关,可以打隧道由A地到B地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少?六、课后

10、练习1如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸, 测得BC=50米,B=60,则江面的宽度为 。3 有一个边长为1米正方形的洞口,想用一个圆形盖去盖住 这个洞口,则圆形盖半径至少为 米。3一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RPPQ, 则RQ= 厘米。4如图,钢索斜拉大桥为等腰三角形,支柱高24米,B=C=30,E、F分别为BD、CD中点,试求B、C两点之间的距离,钢索AB和AE的长度。(精确到1米)学习反思:1.本节课你有哪些收获? 2.你还有哪些疑惑?课后作业:p286、7、8、9题。课题:18.1勾股定理(第4课时

11、)年月日 执教: 一、学习目标1会用勾股定理解决较综合的问题。2树立数形结合的思想。二、重点:勾股定理的综合应用。 难点:勾股定理的综合应用。三、课堂引入复习勾股定理的内容。本节课探究勾股定理的综合应用。四、例习题分析例1(补充)1已知:在RtABC中,C=90,CDBC于D,A=60,CD=, 求线段AB的长。 分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。 要求学生能够自己画图,并正确标图。例2(补充)已知:如图,ABC中,AC=4,B=45,A=60,根据题设可知什么? C A BBBB小结:可见解一般三角形的问题常常通过

12、作高转化为直角三角形的问题。并指出如何作辅助线?例3(补充)已知:如图,B=D=90,A=60,AB=4,CD=2。 求:四边形ABCD的面积。小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法, 把四边形面积转化为三角形面积之差。例4(教材P26页探究)分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。变式训练:在数轴上画出表示的点。五、课堂练习1ABC中,AB=AC=25cm,高AD=20cm,则BC= ,SABC= 。2ABC中,若A=2B=3C,AC=cm,则A= 度,B= 度,C= 度,BC= ,SABC= 。

13、3ABC中,C=90,AB=4,BC=,CDAB于D,则AC= ,CD= ,BD= ,AD= ,SABC= 。4已知:如图,ABC中,AB=26,BC=25,AC=17,求SABC。六、课后练习1在RtABC中,C=90,CDBC于D,A=60,CD=,AB= 。2在RtABC中,C=90,SABC=30,c=13,且ab,则a= ,b= 。3已知:如图,在ABC中,B=30,C=45,AC=,求(1)AB的长;(2)SABC。4在数轴上画出表示的点。学习反思:1.本节课你有哪些收获? 2.你还有哪些疑惑?课后作业:p2910、11、12、题。课题:18.2勾股定理的逆定理(一)(第5课时)年

14、月日 执教: 一、学习目标1体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的证明方法。3理解原命题、逆命题、逆定理的概念及关系。二、重点:掌握勾股定理的逆定理及证明。 难点:勾股定理的逆定理的证明。三、课堂引入创设情境:怎样判定一个三角形是等腰三角形?怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。四、例习题分析例1说出下列命题的逆命题,这些命题的逆命题成立吗?同旁内角互补,两条直线平行。如果两个实数的平方相等,那么两个实数平方相等。线段垂直平分线上的点到线段两端点的距离相等。直角三角形中30角所对的直角边等于斜边的一半。分析

15、:每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。解略。例2证明:如果三角形的三边长a,b,c满足a2+b2=c2, 那么这个三角形是直角三角形。例3已知:在ABC中,A、B、C的对边分别是a、b、c,a=n21,b=2n,c=n21(n1)求证:C=90。五、课堂练习1判断题。在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。命题:“在一个三角形中,有一个角是30,那么它所对的边是另一边的一半。”的逆命题是真命题。勾股定理的逆定理

16、是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。ABC的三边之比是1:1:,则ABC是直角三角形。2ABC中A、B、C的对边分别是a、b、c,下列命题中的假命题是( )A如果CB=A,则ABC是直角三角形。B如果c2= b2a2,则ABC是直角三角形,且C=90。C如果(ca)(ca)=b2,则ABC是直角三角形。D如果A:B:C=5:2:3,则ABC是直角三角形。3下列四条线段不能组成直角三角形的是( )Aa=8,b=15,c=17 Ba=9,b=12,c=15Ca=,b=,c= Da:b:c=2:3:4六、课后练习,1填空题。任何一个命题都有 ,但任何一个定理未必都有

17、 。“两直线平行,内错角相等。”的逆定理是 。在ABC中,若a2=b2c2,则ABC是 三角形, 是直角;若a2b2c2,则B是 。若在ABC中,a=m2n2,b=2mn,c= m2n2,则ABC是 三角形。2若三角形的三边是 1、2; ; 32,42,52 9,40,41; (mn)21,2(mn),(mn)21;则构成的是直角三角形的有( )A2个 B个个个 3已知:在ABC中,A、B、C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?a=9,b=41,c=40; a=15,b=16,c=6;a=2,b=,c=4; a=5k,b=12k,c=13

18、k(k0)。学习反思:1.本节课你有哪些收获? 2.你还有哪些疑惑?课后作业:p341、2、题。课题:18.2勾股定理的逆定理(二)(第6课时)年月日 执教: 一、学习目标1灵活应用勾股定理及逆定理解决实际问题。2进一步加深性质定理与判定定理之间关系的认识。二、重点:灵活应用勾股定理及逆定理解决实际问题。 难点:灵活应用勾股定理及逆定理解决实际问题。三、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。四、例习题分析例1(P33)分析:了解方位角,及方位名词;依题意画出图形;依题意可得小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。例2(补充)

19、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。五、课堂练习1小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。2如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?3如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航

20、向为北偏西40,问:甲巡逻艇的航向?七、课后练习1一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。2一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,则电线杆和地面是否垂直,为什么?3如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知B=90。学习反思:1.本节课你有哪些收获? 2.你还有哪些疑惑?课后作业:p333、4、5

21、题。课题:18.2勾股定理的逆定理(三)(第7课时)年月日 执教: 一、学习目标 1应用勾股定理的逆定理判断一个三角形是否是直角三角形。 2灵活应用勾股定理及逆定理解综合题。 3进一步加深性质定理与判定定理之间关系的认识。二、重点:利用勾股定理及逆定理解综合题。 难点:利用勾股定理及逆定理解综合题。三、课堂引入勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。四、例习题分析例1已知:在ABC中,A、B、C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。 试判断ABC的形状。例2已知:如图,四边形ABCD,ADBC,AB=4,BC=6,CD=5,

22、AD=3。求:四边形ABCD的面积。例3已知:如图,在ABC中,CD是AB边上的高,且CD2=ADBD。求证:ABC是直角三角形。 五、课堂练习1若ABC的三边a、b、c,满足(ab)(a2b2c2)=0,则ABC是( )A等腰三角形;B直角三角形;C等腰三角形或直角三角形; D等腰直角三角形。2已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3, 且ABBC。求:四边形ABCD的面积。3已知:在ABC中,ACB=90,CDAB于D,且CD2=ADBD。求证:ABC中是直角三角形。七、课后练习,1若ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求ABC的面积

23、。2在ABC中,AB=13cm,AC=24cm,中线BD=5cm。求证:ABC是等腰三角形。3已知:如图,1=2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。求证:AB2=AE2+CE2。 学习反思:1.本节课你有哪些收获? 2.你还有哪些疑惑?课后作业:p336、 p387、8题。课题:第十七章勾股定理小结(第8课时)年月日 执教: 一、画出本章知识结构图。二、本章相关知识。 1.勾股定理:2.勾股定理的逆定理:3.互逆命题和互逆定理:三、做一做。 1.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧的墙上时,梯子的顶端在B点,当它靠在另一侧墙上时,梯子的顶端在D

24、点,已知BAC=60,DAE=45,DE=32 m,求BC的长度。2.若ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,则ABC的形状是什么?3.下列命题的逆命题正确的是 ( ) A如果两个角是直角,那么它们相等 B.全等三角形的对应角相等 C如果两个实数相等,那么它们的平方也相等 D。到角的两边距离相等的点在角的平方线上 4.直角三角形的两条边的长度分别是8和10,试求第三边的长度。1. 有一个水池,水面是一个边长为10米的正方形。在水池的中央,有一根芦苇,它高出水面1米,把芦苇的顶端拉向水池一边的中点,芦苇和岸边的水面正好平齐,则水的深度是多少?2. 如图,将一张矩形纸片沿着AE折叠后,D点恰好落在BC边上的F点上,已知AB=8cm,BC=10cm,求EC的长度。学习反思:1.本节课你有哪些收获? 2.你还有哪些疑惑?课后作业:p381、2 、3、4题。八年级数学导学案2014-2015第二学期吴 生 娟

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(勾股定理学案(DOC 18页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|