立体几何知识归纳+典型例题+方法总结(DOC 30页).doc

上传人(卖家):2023DOC 文档编号:6008330 上传时间:2023-05-21 格式:DOC 页数:30 大小:3.76MB
下载 相关 举报
立体几何知识归纳+典型例题+方法总结(DOC 30页).doc_第1页
第1页 / 共30页
立体几何知识归纳+典型例题+方法总结(DOC 30页).doc_第2页
第2页 / 共30页
立体几何知识归纳+典型例题+方法总结(DOC 30页).doc_第3页
第3页 / 共30页
立体几何知识归纳+典型例题+方法总结(DOC 30页).doc_第4页
第4页 / 共30页
立体几何知识归纳+典型例题+方法总结(DOC 30页).doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、立体几何知识归纳+典型例题+方法总结一、知识归纳1平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题.(1)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上.(2)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线.(3)证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合.2. 空间直线(1)空间直线位置关系三种:相交、平行、异面. 相交直线:

2、共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点(2)平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角)(向量与向量所成角 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3)两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.注:是异面直线,则过外一点P,过点P且与都平行平面有一个或没有,但与距离相等的点在同一平面内. (或在这个做出的平面内不能叫与平行的平面)3. 直线

3、与平面平行、直线与平面垂直(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若,得(三垂线定理),三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那

4、么这两条直线垂直于这个平面.(“线线垂直线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等,射影较长的斜线段较长;相等的斜线段的射影相等,较长的斜线段射影较长;垂线段比任何一条斜线段短.b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上.4. 平面平行与平面垂直(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一

5、个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.注:一平面内的任一直线平行于另一平面.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行线线平行”)(4两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5)两个平面垂直性质定理:如果两个平面垂直

6、,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.简证:如图,在平面内过O作OA、OB分别垂直于,因为则.所以结论成立 b.最小角定理的应用(PBN为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 5. 棱柱. 棱锥(1)棱柱a.直棱柱侧面积:(为底面周长,是高)该公式是利用直棱柱的侧面展开图为矩形得出的.斜棱住侧面积

7、:(是斜棱柱直截面周长,是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.四棱柱平行六面体直平行六面体长方体正四棱柱正方体.直四棱柱平行六面体=直平行六面体.c.棱柱具有的性质:棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形.棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.过棱柱不相邻的两条侧棱的截面都是平行四边形.d.平行六面体:定理一:平行六面体的对角线交于一点,并且在交点处互相平分.注:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方

8、体一条对角线与同一个顶点的三条棱所成的角为,则 .推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为,则.(2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.注:一个三棱锥四个面可以都为直角三角形.一个棱柱可以分成等体积的三个三棱锥;所以.a.正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.注:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.正棱锥的侧面积:(底面周

9、长为,斜高为)棱锥的侧面积与底面积的射影公式:(侧面与底面成的二面角为)附:以知,为二面角. 则, 得.注:S为任意多边形的面积(可分别求多个三角形面积和的方法).b.棱锥具有的性质:正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.棱锥的各侧面与底面所成角均相等,则顶点

10、在底面上的射影为底面多边形内心.棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径.(3)球:a.球的截面是一个圆面.球的表面积公式:.球的体积公式:.b.纬度、经度:纬度:地球上一点的纬度是指经过点的球半径与赤道面所成的角的度数.经度:地球上两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平

11、面的二面角的度数,特别地,当经过点的经线是本初子午线时,这个二面角的度数就是点的经度.附:圆柱体积:(为半径,为高)圆锥体积:(为半径,为高)锥体体积:(为底面积,为高) (1). 内切球:当四面体为正四面体时,设边长为a,得.注:球内切于四面体:.外接球:球外接于正四面体,可如图建立关系式.6. 空间向量(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.b.共线向量定理:对空间任意两个向量, 的充要条件是存在实数(具有唯一性),使.c.共面向量:若向量使之平行于平面或在内,则与的关系是平行,记作.d.共面向量定理:如果两个向量不共线,则向量与向量共面的充要

12、条件是存在实数对x、y使.空间任一点O和不共线三点A、B、C,则是PABC四点共面的充要条件.(简证:P、A、B、C四点共面)注:是证明四点共面的常用方法.(2)空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组x、y、z,使.推论:设O、A、B、C是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x、y、z使 (这里隐含x+y+z1).注:设四面体ABCD的三条棱,其中Q是BCD的重心,则向量用即证.对空间任一点O和不共线的三点A、B、C,满足,则四点P、A、B、C是共面(3)a.空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(

13、对应为纵坐标),z轴是竖轴(对应为竖坐标).令=(a1,a2,a3),,则, ,. (向量模与向量之间的转化:)空间两个向量的夹角公式(a,b).空间两点的距离公式:.b.法向量:若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果那么向量叫做平面的法向量. c.向量的常用方法:利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB是平面的一条射线,其中,则点B到平面的距离为.异面直线间的距离 (是两异面直线,其公垂向量为,分别是上任一点,为间的距离).直线与平面所成角的正弦值(为平面的法向量).利用法向量求二面角的平面角定理:设分别是二面角中平面的法向量,则所成的角就是所求二面

14、角的平面角或其补角大小(方向相同,则为补角,反方,则为其夹角).d.证直线和平面平行定理:已知直线平面,且C、D、E三点不共线,则a的充要条件是存在有序实数对使.(常设求解若存在即证毕,若不存在,则直线AB与平面相交).二、经典例题考点一 空间向量及其运算1. 已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?解析:要判断点与是否一定共面,即是要判断是否存在有序实数对使或对空间任一点,有.答案:由题意:,即,所以,点与共面点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算2.如图,已知矩形和矩形所在

15、平面互相垂直,点,分别在对角线,上,且,求证:平面解析:要证明平面,只要证明向量可以用平面内的两个不共线的向量和线性表示答案:证明:如图,因为在上,且,所以同理,又,所以又与不共线,根据共面向量定理,可知,共面由于不在平面内,所以平面点评:空间任意的两向量都是共面的与空间的任两条直线不一定共面要区别开.考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABCA1B1C1中,AC3,BC4,AA14,点D是AB的中点, (I)求证:ACBC1; (II)求证:AC 1/平面CDB1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明

16、线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.答案:解法一:(I)直三棱柱ABCA1B1C1,底面三边长AC=3,BC=4AB=5, ACBC,且BC1在平面ABC内的射影为BC, ACBC1;(II)设CB1与C1B的交点为E,连结DE, D是AB的中点,E是BC1的中点,ABCA1B1C1Exyz DE/AC1, DE平面CDB1,AC1平面CDB1, AC1/平面CDB1;解法二:直三棱柱ABCA1B1C1底面三边长AC3,BC4,AB5,AC、BC、C1C两两垂直,如图,以C为坐标原点,直线CA、CB、C1C分别为x轴、y轴、z轴,建立空间直角坐标系,则

17、C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)(1)(3,0,0),(0,4,0),0,ACBC1.(2)设CB1与C1B的交战为E,则E(0,2,2).(,0,2),(3,0,4),DEAC1.4. 如图所示,四棱锥PABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点.(1)求证:BM平面PAD;(2)在侧面PAD内找一点N,使MN平面PBD;(3)求直线PC与平面PBD所成角的正弦.解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:

18、(1)是的中点,取PD的中点,则,又四边形为平行四边形, (2)以为原点,以、 所在直线为轴、轴、轴建立空间直角坐标系,如图,则,在平面内设, 由 由 是的中点,此时 (3)设直线与平面所成的角为,设为 故直线与平面所成角的正弦为解法二: (1)是的中点,取PD的中点,则,又四边形为平行四边形, (2)由(1)知为平行四边形,又 同理, 为矩形 ,又 作故交于,在矩形内, 为的中点当点为的中点时, (3)由(2)知为点到平面的距离,为直线与平面所成的角,设为,直线与平面所成的角的正弦值为点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作

19、已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是090,其方法是平移法和补形法;直线与平面所成角的范围是090,其解法是作垂线、找射影;二面角0180,其方法是:定义法;三垂线定理及其逆定理;垂面法 另外也可借助空间向量求这三种角的大小.5. 如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.()求与底面所

20、成角的大小;()求证:平面;()求二面角的余弦值. 解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法 答案:(I)取DC的中点O,由PDC是正三角形,有PODC又平面PDC底面ABCD,PO平面ABCD于O连结OA,则OA是PA在底面上的射影PAO就是PA与底面所成角ADC=60,由已知PCD和ACD是全等的正三角形,从而求得OA=OP=PAO=45PA与底面ABCD可成角的大小为45 (II)由底面ABCD为菱形且ADC=60,DC=2,DO=1,有OADC 建立空间直角坐标系如图,则, 由M为PB中点,PADM,PAD

21、C PA平面DMC(III)令平面BMC的法向量,则,从而x+z=0; , ,从而 由、,取x=1,则 可取由(II)知平面CDM的法向量可取, 所求二面角的余弦值为法二:()方法同上 ()取的中点,连接,由()知,在菱形中,由于,则,又,则,即,又在中,中位线,则,则四边形为,所以,在中,则,故而,则()由()知,则为二面角的平面角,在中,易得,故,所求二面角的余弦值为 点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.6. 如图,在长方体中,点在线段上.()求异面直线与所成的角;()若二面角

22、的大小为,求点到平面的距离.解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利于问题的解决,此外用向量也是一种比较好的方法.答案:解法一:()连结.由已知,是正方形,有.平面,是在平面内的射影.根据三垂线定理,得,则异面直线与所成的角为.作,垂足为,连结,则所以为二面角的平面角,.于是易得,所以,又,所以.设点到平面的距离为.即,即,.故点到平面的距离为.解法二:分别以为轴、轴、轴,建立空间直角坐标系.()由,得设,又,则.则异面直线与所成的角为.()为面的法向量,设为面的法向量,则. 由,得,则,即 由、,

23、可取又,所以点到平面的距离. 点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求角度和距离,在求此类问题中,尽量要将这些量归结于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较容易写出来.考点四 探索性问题7. 如图所示:边长为2的正方形ABFC和高为2的直角梯形ADEF所在的平面互相垂直且DE=,ED/AF且DAF=90. (1)求BD和面BEF所成的角的余弦; (2)线段EF上是否存在点P使过P、A、C三点的平面和直线DB垂直,若存在,求EP与PF的比值;若

24、不存在,说明理由.解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.答案:(1)因为AC、AD、AB两两垂直,建立如图坐标系,则B(2,0,0),D(0,0,2),E(1,1,2),F(2,2,0),则设平面BEF的法向量,则可取,向量所成角的余弦为.即BD和面BEF所成的角的余弦. (2)假设线段EF上存在点P使过P、A、C三点的平面和直线DB垂直,不妨设EP与PF的比值为m,则P点坐标为则向量,向量所以. 点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了

25、较高要求.8. 如图,在三棱锥中,是的中点,且,A(I)求证:平面平面;(II)试确定角的值,使得直线与平面所成的角为解析:本例可利用综合法证明求解,也可用向量法求解.答案:解法1:(),是等腰三角形,又是的中点,又底面于是平面又平面,平面平面() 过点在平面内作于,则由()知平面连接,于是就是直线与平面所成的角依题意,所以在中,;在中,故当时,直线与平面所成的角为解法2:()以所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,则,于是,从而,即ADBCVxyz同理,即又,平面又平面平面平面()设平面的一个法向量为,则由得可取,又,于是,即,故交时,直线与平面所成的角为解法3:()以点

26、为原点,以所在的直线分别为轴、轴,建立如图所示的空间直角坐标系,则,于是,从而,即同理,即又, 平面又平面, 平面平面()设平面的一个法向量为,ADBCVxy则由,得可取,又,于是,即 故角时,即直线与平面所成角为 点评:证明两平面垂直一般用面面垂直的判定定理,求线面角一是找线在平面上的射影在直角三角形中求解,但运用更多的是建空间直角坐标系,利用向量法求解考点五 折叠、展开问题9已知正方形 、分别是、的中点,将沿折起,如图所示,记二面角的大小为 (I) 证明平面;(II)若为正三角形,试判断点在平面内的射影是否在直线上,证明你的结论,并求角的余弦值 分析:充分发挥空间想像能力,重点抓住不变的位

27、置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF分别为正方形ABCD得边AB、CD的中点,EB/FD,且EB=FD,四边形EBFD为平行四边形 BF/ED.,平面 (II)如右图,点A在平面BCDE内的射影G在直线EF上,过点A作AG垂直于平面BCDE,垂足为G,连结GC,GD ACD为正三角形,AC=AD.CG=GD.G在CD的垂直平分线上, 点A在平面BCDE内的射影G在直线EF上,过G作GH垂直于ED于H,连结AH,则,所以为二面角A-DE-C的平面角 即.设原正方体的边长为2a,连结AF,在折后图的AEF中,AF=,EF=2AE=2a,即AEF为直角三角形, .

28、在RtADE中, ., 点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线.关键要抓不变的量.考点六 球体与多面体的组合问题10设棱锥M-ABCD的底面是正方形,且MAMD,MAAB,如果AMD的面积为1,试求能够放入这个棱锥的最大球的半径.分析:关键是找出球心所在的三角形,求出内切圆半径.解: ABAD,ABMA,AB平面MAD,由此,面MAD面AC.记E是AD的中点,从而MEAD.ME平面AC,MEEF.设球O是与平面MAD、平面AC、平面MB

29、C都相切的球.不妨设O平面MEF,于是O是MEF的内心.设球O的半径为r,则r设ADEFa,SAMD1.ME.MF,r-1.当且仅当a,即a时,等号成立.当ADME时,满足条件的球最大半径为-1.点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系.三、方法总结1位置关系:(1)两条异面直线相互垂直 证明方法:证明两条异面直线所成角为90;证明两条异面直线的方向量相互垂直.(2)直线和平面相互平行证明方法:证明直线和这个平

30、面内的一条直线相互平行;证明这条直线的方向向量和这个平面内的一个向量相互平行;证明这条直线的方向向量和这个平面的法向量相互垂直.(3)直线和平面垂直证明方法:证明直线和平面内两条相交直线都垂直,证明直线的方向量与这个平面内不共线的两个向量都垂直;证明直线的方向量与这个平面的法向量相互平行.(4)平面和平面相互垂直证明方法:证明这两个平面所成二面角的平面角为90;证明一个平面内的一条直线垂直于另外一个平面;证明两个平面的法向量相互垂直.2求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离.(1)

31、两条异面直线的距离求法:利用公式(其中A、B分别为两条异面直线上的一点,为这两条异面直线的法向量)(2)点到平面的距离求法:“一找二证三求”,三步都必须要清楚地写出来.等体积法.向量法,利用公式(其中A为已知点,B为这个平面内的任意一点,这个平面的法向量)3求角(1)两条异面直线所成的角求法:先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角.(2)直线和平面所成的角求法:“一找二证三求”,三步都必须要清楚地写出来.向量法

32、,先求直线的方向量于平面的法向量所成的角,那么所要求的角为或.(3)平面与平面所成的角求法:“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求.通过射影面积来求(在其中一个平面内找出一个三角形,然后找这个三角形在另外一个平面的射影,那么这个三角形的射影面积与原三角形面积之比即为cos,注意到我们要求的角为或);向量法,先求两个平面的法向量所成的角为,那么这两个平面所成的二面角的平面角为或. 我们现在来解决立体几何的有关问题的时候,注意到向量知识的应用,如果可以比较容易建立坐标系,找出各点的坐标,那么剩下的问题基本上就可以解决了,如果建立坐标系不好做的话,有时求距离、角的时候也可以用向量,运用向量不是很方便的时候,就用传统的方法了! 30 / 30

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(立体几何知识归纳+典型例题+方法总结(DOC 30页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|