无锡市初中数学圆的知识点总复习附答案.doc

上传人(卖家):刘殿科 文档编号:6054044 上传时间:2023-05-24 格式:DOC 页数:16 大小:814KB
下载 相关 举报
无锡市初中数学圆的知识点总复习附答案.doc_第1页
第1页 / 共16页
无锡市初中数学圆的知识点总复习附答案.doc_第2页
第2页 / 共16页
无锡市初中数学圆的知识点总复习附答案.doc_第3页
第3页 / 共16页
无锡市初中数学圆的知识点总复习附答案.doc_第4页
第4页 / 共16页
无锡市初中数学圆的知识点总复习附答案.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、无锡市初中数学圆的知识点总复习附答案一、选择题1如图,在矩形中,对角线,内切于,则图中阴影部分的面积是( )ABCD【答案】D【解析】【分析】先根据勾股定理求出BC,连接OA、OB、OC、过点O作OHAB,OEBC,OFAC,设的半径为r,利用面积法求出r=2,再利用三角形ABC的面积减去圆O的面积得到阴影的面积【详解】四边形ABCD是矩形,B=90,BC=8,连接OA、OB、OC、过点O作OHAB,OEBC,OFAC,设的半径为r,内切于,OH=OE=OF=r,解得r=2,的半径为2,故选:D【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关

2、键2如图,已知AB是O的直径,CD是弦,且CDAB,BC=3,AC=4,则sinABD的值是()ABCD【答案】D【解析】【分析】由垂径定理和圆周角定理可证ABD=ABC,再根据勾股定理求得AB=5,即可求sinABD的值【详解】AB是O的直径,CDAB,弧AC=弧AD,ABD=ABC根据勾股定理求得AB=5,sinABD=sinABC=故选D【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念3在RtABC中,ACB=90.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( )A1BC D【答案】A【解析】【分析】根据直

3、径所对的圆周角为直角可知CED=90,则AEC=90,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得OE=AC=4,在RtOBC中,根据勾股定理可求得OB=5,即可得解.【详解】解:连接CE,E点在以CD为直径的圆上,CED=90,AEC=180-CED=90,E点也在以AC为直径的圆上,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,AC=8,OC=AC=4,BC=3,ACB=90,OB=5,OE=OC=4,BE=OB-OE=5-4=1.故选A.【点睛】本题考查了直径所对的圆周角为直角,直角三角形的性质和勾股定理.4如图,在矩形中,以

4、为圆心,长为半径画弧交于点,以为圆心,长为半径画弧交的延长线于点,则图中阴影部分的面积是( )ABCD【答案】C【解析】【分析】先分别求出扇形FCD和扇形EAD的面积以及矩形ABCD的面积,再根据阴影面积扇形FCD的面积(矩形ABCD的面积扇形EAD的面积)即可得解【详解】解:S扇形FCD,S扇形EAD,S矩形ABCD,S阴影S扇形FCD(S矩形ABCDS扇形EAD)9(244)924+41324故选:C【点睛】本题考查扇形面积的计算,根据阴影面积扇形FCD的面积(矩形ABCD的面积扇形EAD的面积)是解答本题的关键5已知下列命题:若ab,则acbc;若a=1,则=a;内错角相等;90的圆周角

5、所对的弦是直径其中原命题与逆命题均为真命题的个数是()A1个B2个C3个D4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可【详解】解:若ab,则acbc是假命题,逆命题是假命题;若a=1,则=a是真命题,逆命题是假命题;内错角相等是假命题,逆命题是假命题;90的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另一个命题的逆命题,判断命题

6、的真假关键是要熟悉课本中的性质定理6如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为( )ABCD【答案】C【解析】【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率【详解】解:设小正方形的边长为1,则其面积为1圆的直径正好是大正方形边长,根据勾股定理,其小正方形对角线为,即圆的直径为,大正方形的边长为,则大正方形的面积为,则小球停在小正方形内部(阴影)区域的概率为故选:【点睛】概率相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比设较小吧边长为单位1是在选择填空题中求比的常见方法.7如图,在扇形中

7、,点是弧上的一个动点(不与点、重合),、分别是弦,的中点若,则扇形的面积为( )ABCD【答案】A【解析】【分析】如图,作OHAB于H利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题【详解】解:如图作OHAB于HC、D分别是弦AP、BP的中点CD是APB的中位线,AB2CD,OHAB,BHAH,OAOB,AOB120,AOHBOH60,在RtAOH中,sinAOH,AO,扇形AOB的面积为:,故选:A【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型8如图,在中,将绕点按顺时针方向旋转

8、度后得到,此时点在边上,斜边交边于点,则的大小和图中阴影部分的面积分别为( )ABCD【答案】C【解析】试题分析:ABC是直角三角形,ACB=90,A=30,BC=2,B=60,AC=BCcotA=2=2,AB=2BC=4,EDC是ABC旋转而成,BC=CD=BD=AB=2,B=60,BCD是等边三角形,BCD=60,DCF=30,DFC=90,即DEAC,DEBC,BD=AB=2,DF是ABC的中位线,DF=BC=2=1,CF=AC=2=,S阴影=DFCF=故选C考点:1.旋转的性质2.含30度角的直角三角形9如图,O中,弦BC与半径OA相交于点D,连接AB,OC,若A=60,ADC=85,

9、则C的度数是()A25B27.5C30D35【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出B以及ODC度数,再利用圆周角定理以及三角形内角和定理得出答案详解:A=60,ADC=85,B=85-60=25,CDO=95,AOC=2B=50,C=180-95-50=35故选D点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出AOC度数是解题关键10如图,圆锥的底面半径为1,母线长为3,则侧面积为()A2B3C6D8【答案】B【解析】【分析】圆锥的侧面积=底面周长母线长2,把相应数值代入即可求解【详解】解:圆锥的侧面积为: 2133,故选:B【点睛】此题考查圆锥

10、的计算,解题关键在于掌握运算公式.11如图,AB是O的直径,AC是O的切线,连接OC交O于点D,连接BD,C=40则ABD的度数是( )A30B25C20D15【答案】B【解析】试题分析:AC为切线 OAC=90 C=40 AOC=50OB=OD ABD=ODB ABD+ODB=AOC=50 ABD=ODB=25.考点:圆的基本性质.12如图,将边长为cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O经过的路线长是( )cmA8B8C3D4【答案】D【解析】【分析】由题意可得翻转一次中心O经过的路线长就是1个半径为1,圆心角是90的弧长,然后进行计算即可解答

11、【详解】解:正方形ABCD的边长为cm,对角线的一半1cm,则连续翻动8次后,正方形的中心O经过的路线长84故选:D【点睛】本题考查了弧长的计算,审清题意、确定点O的路线和长度是解答本题的关键13如图,抛物线yax26ax+5a(a0)与x轴交于A、B两点,顶点为C点以C点为圆心,半径为2画圆,点P在C上,连接OP,若OP的最小值为3,则C点坐标是()AB(4,5)C(3,5)D(3,4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A、B、C三点的坐标,再由当点O、P、C三点共线时,OP取最小值为3,列出关于a的方程,即可求解【详解】 与x轴交于A、B两点,A(1,0)、B(5,0

12、), ,顶点 ,当点O、P、C三点共线时,OP取最小值为3,OCOP+25, , ,C(3,4),故选:D【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长14如图,在边长为8的菱形ABCD中,DAB=60,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是 ( )ABCD【答案】C【解析】【分析】由菱形的性质得出AD=AB=8,ADC=120,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积扇形DEFG的面积,根据面积公式计算即可【详解】解:四边形ABCD是菱形,DAB=60,A

13、D=AB=8,ADC=18060=120,DF是菱形的高,DFAB,DF=ADsin60=,图中阴影部分的面积=菱形ABCD的面积扇形DEFG的面积=故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键15如图,AB是O的直径,弦CDAB于E点,若AD=CD= 则的长为()ABCD【答案】B【解析】【分析】根据垂径定理得到, ,A=30,再利用三角函数求出OD=2,即可利用弧长公式计算解答.【详解】如图:连接OD,AB是O的直径,弦CDAB于E点,AD=CD= , ,A=30,DOE=60,OD=,的长=的长=,故选:B.【点睛】此题考

14、查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.16下列命题中正确的个数是( )过三点可以确定一个圆直角三角形的两条直角边长分别是5和12,那么它的外接圆半径为6.5如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米 三角形的重心到三角形三边的距离相等A1个B2个C3个D4个【答案】A【解析】【分析】根据圆的作法即可判断;先利用勾股定理求出斜边的长度,然后根据外接圆半径等于斜边的一半即可判断;根据圆与圆的位置关系即可得出答案;根据重心的概念即可得出答案【详解】过不在同一条直线上的三点可以确定一个圆,故错误;直角三角形的两条直角边长分别是5和12,斜边为 ,它的外接圆半径为,

15、故正确;如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米或1厘米,故错误; 三角形的内心到三角形三边的距离相等,故错误;所以正确的只有1个,故选:A【点睛】本题主要考查直角三角形外接圆半径,圆与圆的位置关系,三角形内心,重心的概念,掌握直角三角形外接圆半径的求法,圆与圆的位置关系,三角形内心,重心的概念是解题的关键17如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm,则这个圆锥的侧面积为()A50cm2B50cm2C25cm2D25cm2【答案】D【解析】【分析】根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可【详解】解:如图所示,等腰三角形的底边和高线

16、长均为10cm,等腰三角形的斜边长5,即圆锥的母线长为5cm,圆锥底面圆半径为5,这个圆锥的底面圆周长=25=10,即为侧面展开扇形的弧长,圆锥的侧面积10525cm2,故选:D【点睛】本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长18如图,在扇形AOB中,AOB=90,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为()A2B+2C2D +【答案】A【解析】【分析】连接OE.可得=BOE-BCD-SOCE.根据已知条件易求得BC=OC

17、=CD=2,BO=OE=4.BOE=,CE=,所以由扇形面积公式、 三角形面积公式进行解答即可.【详解】解:连接OE,可得=BOE-BCD-SOCE,由已知条件可得,BC=OC=CD=2,又,BO=OE=4,BOE=,可得CE=,BOE=,BCD,SOCE=,=BOE-BCD-SOCE=,故选A.【点睛】本题主要考查扇形面积公式、 三角形面积公式,牢记公式并灵活运用可求得答案.19如图,在O中,OCAB,ADC26,则COB的度数是()A52B64C48D42【答案】A【解析】【分析】由OCAB,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出COB的度数【详解】解:OCAB,COB2ADC52故选:A【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解题的关键20如图,75的网格中的小正方形的边长都为1,小正方形的顶点叫格点,ABC的三个顶点都在格点上,过点C作ABC外接圆的切线,则该切线经过的格点个数是()A1B2C3D4【答案】C【解析】【分析】作ABC的外接圆,作出过点C的切线,两条图象法即可解决问题.【详解】如图O即为所求,观察图象可知,过点C作ABC外接圆的切线,则该切线经过的格点个数是3个,选:C【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 其它资料
版权提示 | 免责声明

1,本文(无锡市初中数学圆的知识点总复习附答案.doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|