1、一次函数专项训练答案一、选择题1已知正比例函数,随的增大而减小,那么一次函数的图象大致是如图中的()ABCD【答案】D【解析】【分析】由随的增大而减小即可得出m0,再由m0、m0即可得出一次函数的图象经过第一、二、四象限,对照四个选项即可得出结论【详解】解:正比例函数ymx(m0)中,y随x的增大而减小,m0,m0,一次函数ymxm的图象经过第一、二、四象限故选:D【点睛】本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k0,b0ykxb的图象在一、二、四象限”是解题的关键2如图,已知一次函数的图象与坐标轴分别交于A、B两点,O的半径为1,P是线段AB上的一个
2、点,过点P作O的切线PM,切点为M,则PM的最小值为( )A2BCD【答案】D【解析】【分析】【详解】解:连结OM、OP,作OHAB于H,如图,先利用坐标轴上点的坐标特征:当x=0时,y=x+2=2,则A(0,2),当y=0时,x+2=0,解得x=2,则B(2,0),所以OAB为等腰直角三角形,则AB=OA=4,OH=AB=2,根据切线的性质由PM为切线,得到OMPM,利用勾股定理得到PM=,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为故选D【点睛】本题考查切线的性质;一次函数图象上点的坐标特征3在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则
3、k和b的取值范围是()Ak0,b0Bk0,b0Ck0,b0Dk0,b0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可【详解】一次函数y=kx+b的图象经过一、二、四象限,k0,b0,故选C【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k0)中,当k0,b0时图象在一、二、四象限4一次函数y=kx+b(k0)的图象可能是( )ABCD【答案】C【解析】【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限【详解】k0和k0时,反比例函数的图象位于第一、三象限,一次函数的图象交y轴于负半轴,y随着x的增大而增大,A选项错误,C选项符合
4、;当k0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y随着x的增大而增减小,B.D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.7某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示下列说法中正确的个数是()学校到景点的路程为40km;小轿车的速度是1km/min;a15;当小轿车驶到景点
5、入口时,大客车还需要10分钟才能到达景点入口A1个B2个C3个D4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决【详解】解:由图象可知,学校到景点的路程为40km,故正确,小轿车的速度是:40(6020)1km/min,故正确,a1(3520)15,故正确,大客车的速度为:15300.5km/min,当小轿车驶到景点入口时,大客车还需要:(4015)(4015)110分钟才能达到景点入口,故正确,故选D【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答8如图,点在数轴上分别表示数,则一次函数的图
6、像一定不经过( )A第一象限B第二象限C第三象限D第四象限【答案】A【解析】【分析】根据数轴得出02a+31,求出1a1.5,进而可判断1a和a2的正负性,从而得到答案【详解】解:根据数轴可知:02a+31,解得:1a1.5,1a0,a20,一次函数的图像经过第二、三、四象限,不可能经过第一限故选:A【点睛】本题考查了利用数轴比较大小和一元一次不等式的解法以及一次函数图象与系数的关系熟练掌握不等式的解法及一次函数的图象性质是解决本题的关键9将直线向下平移个单位长度得到新直线,则的值为( )ABCD【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可
7、知:直线y=2x+1向下平移n个单位长度,得到新的直线的解析式是y=2x+1-n,则1-n=-1,解得n=2故选:D【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键10如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的,分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系以下结论正确的是( )A甲的速度为20km/hB甲和乙同时出发C甲出发1.4h时与乙相遇D乙出发3.5h时到达A地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得
8、出相遇的时间;根据图形即可得出乙出发3h时到达A地【详解】解:A甲的速度为:602=30,故A错误; B根据图象即可得出甲比乙早出发0.5小时,故B错误; C设对应的函数解析式为,所以:, 解得即对应的函数解析式为; 设对应的函数解析式为,所以:, 解得 即对应的函数解析式为,所以:, 解得 点A的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D根据图形即可得出乙出发3h时到达A地,故D错误 故选:C【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答11下列命题是假命题的是( )A三角形的外心到三角形的
9、三个顶点的距离相等B如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C将一次函数y3x-1的图象向上平移3个单位,所得直线不经过第四象限D若关于x的一元一次不等式组无解,则m的取值范围是【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y3x-1的图象向上平移3个单位,所得直线不经过第四象限
10、,正确,是真命题;D. 若关于x的一元一次不等式组无解,则m的取值范围是,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组12将直线向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )ABCD【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数
11、解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键13如图1,在RtABC中,ACB=90,点P以每秒1cm的速度从点A出发,沿折线ACCB运动,到点B停止过点P作PDAB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示当点P运动5秒时,PD的长是( )A1.5cmB1.2cmC1.8cmD2cm【答案】B【解析】【分析】【详解】由图2知,点P在AC、CB上的运动时间时间分别是3秒和4秒,点P的运动速度是每秒1cm ,AC=3,BC=4在RtABC中,ACB=90,根据勾股定理得:AB=5如图,过点C作
12、CHAB于点H,则易得ABCACH,即如图,点E(3,),F(7,0)设直线EF的解析式为,则,解得:直线EF的解析式为当时,故选B14一次函数yxb的图像,沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1),则b的值为( )A5B5C3D3【答案】C【解析】【分析】先根据一次函数沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1)求出函数经过的点,再用待定系数法求解即可.【详解】解:过点(1,0)且垂直于x轴的直线为x=1,根据题意,yxb的图像关于直线x=1的对称点是(4,1),yxb的图像过点(2,1),把点(2,1)代入一次函数得到:,b=3,故C为答案.【点睛】本题主要
13、考查了与一次函数图像有关的知识点,求出从沿某直线翻折后经过的点求函数图像经过哪个点是解题的关键,并掌握用待定系数法求解.15若实数a、b、c满足a+b+c=0,且abc,则函数y=ax+c的图象可能是( )ABCD【答案】A【解析】【分析】a+b+c=0,且abc,a0,c0,(b的正负情况不能确定也无需确定)a0,则函数y=ax+c图象经过第二四象限,c0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!16下列命题中哪一个是假命题()A8的立方根是2B在函数y3x的图象中,y随x增大而增大C菱形的对角线相等且平分D在同圆中,相等的圆心角
14、所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项【详解】A、8的立方根是2,正确,是真命题;B、在函数的图象中,y随x增大而增大,正确,是真命题;C、菱形的对角线垂直且平分,故错误,是假命题;D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键17在平面直角坐标系中,函数的图象如图所示,则函数的图象大致是()ABCD【答案】C【解析】【分析】根据函数图象易知,可得,所以函数图象沿y轴向下平移可得【详解】解
15、:根据函数图象易知,故选:C【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键18如图,经过点B(2,0)的直线ykx+b与直线y4x+2相交于点A(1,2),4x+2kx+b0的解集为()Ax2B2x1Cx1Dx1【答案】B【解析】【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求【详解】经过点B(2,0)的直线ykx+b与直线y4x+2相交于点A(1,2),直线ykx+b与直线y4x+2的交点
16、A的坐标为(1,2),直线ykx+b与x轴的交点坐标为B(2,0),又当x1时,4x+2kx+b,当x2时,kx+b0,不等式4x+2kx+b0的解集为2x1故选B【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合19如图在平面直角坐标系中,等边三角形的边长为4,点在第二象限内,将沿射线平移,平移后点的横坐标为,则点的坐标为( )ABCD【答案】D【解析】【分析】先根据已知条件求出点A、B的坐标,再求出直线OA的解
17、析式,继而得出点的纵坐标,找出点A平移至点的规律,即可求出点的坐标【详解】解:三角形是等边三角形,且边长为4设直线OA的解析式为,将点A坐标代入,解得:即直线OA的解析式为:将点的横坐标为代入解析式可得:即点的坐标为点A向右平移个单位,向下平移6个单位得到点的坐标为故选:D【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键20某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴)下列说法正确的是( )从开始观察时起,50天后该植物停止长高;直线AC的函数表达式为;
18、第40天,该植物的高度为14厘米;该植物最高为15厘米ABCD【答案】A【解析】【分析】根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;设直线AC的解析式为y=kx+b(k0),然后利用待定系数法求出直线AC线段的解析式,把x=40代入的结论进行计算即可得解;把x=50代入的结论进行计算即可得解【详解】解:CDx轴,从第50天开始植物的高度不变,故的说法正确;设直线AC的解析式为y=kx+b(k0),经过点A(0,6),B(30,12),解得:,直线AC的解析式为(0x50),故的结论正确;当x=40时,即第40天,该植物的高度为14厘米;故的说法正确;当x=50时,即第50天,该植物的高度为16厘米;故的说法错误综上所述,正确的是故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键