1、有理数部分1填空:(1)当a_时,a与a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是_;(3)在数轴上,A点表示1,与A点距离3个单位长度的点所表示的数是_;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_错解 (1)a为任何有理数;(2)5;(3)3;(4)62用“有”、“没有”填空:在有理数集合里,_最大的负数,_最小的正数,_绝对值最小的有理数错解 有,有,没有3用“都是”、“都不是”、“不都是”填空:(1)所有的整数_负整数;(2)小学里学过的数_正数;(3)带有“”号的数_正数;(4)有理数的绝对值_正数;(5)若|a|b|=
2、0,则a,b_零;(6)比负数大的数_正数错解 (1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是4用“一定”、“不一定”、“一定不”填空:(1)a_是负数;(2)当ab时,_有|a|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数_大于距原点较远的点所表示的数;(4)|x|y|_是正数;(5)一个数_大于它的相反数;(6)一个数_小于或等于它的绝对值;错解 (1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定5把下列各数从小到大,用“”号连接: 并用“”连接起来8填空:(1)如果x=(11),那么x=_;(2)绝对值不大于4的负整数是_;
3、(3)绝对值小于4.5而大于3的整数是_错解 (1)11;(2)1,2,3;(3)49根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值10代数式|x|的意义是什么?错解 代数式|x|的意义是:x的相反数的绝对值11用适当的符号(、)填空:(1)若a是负数,则a_a;(2)若a是负数,则a_0;(3)如果a0,且|a|b|,那么a_ b错解 (1);(2);(3)12写出绝对值不大于2的整数错解 绝对值不大2的整数有1,113
4、由|x|=a能推出x=a吗?错解 由|x|=a能推出x=a如由|x|=3得到x=3,由|x|=5得到x=514由|a|=|b|一定能得出a=b吗?错解 一定能得出a=b如由|6|=|6|得出6=6,由|4|=|4|得4=415绝对值小于5的偶数是几?错解 绝对值小于5的偶数是2,4有理数错解诊断练习正确答案1(1)不等于0的有理数;(2)5,5;(3)2,4;(4)62(1)没有;(2)没有;(3)有3(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外)4(1)不一定;(2)不一定;(3)不一定;(4)不一
5、定;(5)不一定;(6)一定上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较8(1)11;(2)1,2,3,4;(3)4,410x绝对值的相反数11(1);(2);(3)122,1,0,1,213不一定能推出x=a,例如,若|x|=2则x值不存在14不一定能得出a=b,如|4|=|4|,但44152,4,0,2,4整式的加减例1 下列说法正确的是( ) A. 的指数是0B. 没有系数 C. 3是一次单项式D. 3是单项式分析:正确答案应选D。这道题主要是考查学生对单项式的次数和系数的理解。选A或B的同学忽略了的指数或系数1都可以省略不写,选C的同学则没有理解单项式的次数是指字母的指
6、数。 例2 多项式的次数是( ) A. 15次B. 6次C. 5次D. 4次 分析:易错答A、B、D。这是由于没有理解多项式的次数的意义造成的。正确答案应选C。 例3 下列式子中正确的是( ) A. B. C. D. 分析:易错答C。许多同学做题时由于马虎,看见字母相同就误以为是同类项,轻易地就上当,学习中务必要引起重视。正确答案选B。 例4 把多项式按的降幂排列后,它的第三项为( ) A. 4B. C. D. 分析:易错答B和D。选B的同学是用加法交换律按的降幂排列时没有连同“符号”考虑在内,选D的同学则完全没有理解降幂排列的意义。正确答案应选C。 例5 整式去括号应为( ) A. B. C
7、. D. 分析:易错答A、D、C。原因有:(1)没有正确理解去括号法则;(2)没有正确运用去括号的顺序是从里到外,从小括号到中括号。 例6 当取( )时,多项式中不含项 A. 0B. C. D. 分析:这道题首先要对同类项作出正确的判断,然后进行合并。合并后不含项(即缺项)的意义是项的系数为0,从而正确求解。正确答案应选C。 例7 若A与B都是二次多项式,则AB:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零。上述结论中,不正确的有( ) A. 2个B. 3个C. 4个D. 5个分析:易错答A、C、D。解这道题时,尽量从每一个结论的反面入手。
8、如果能够举出反例即可说明原结论不成立,从而得以正确的求解。 例8 在的括号内填入的代数式是( ) A. B. C. D. 分析:易错答D。添后一个括号里的代数式时,括号前添的是“”号,那么这两项都要变号,正确的是A。 例9 求加上等于的多项式是多少? 错解: 这道题解错的原因在哪里呢? 分析:错误的原因在第一步,它没有把减数()看成一个整体,而是拆开来解。 正解: 答:这个多项式是 例10 化简 错解:原式 分析:错误的原因在第一步应用乘法分配律时,这一项漏乘了3。 正解:原式 解方程和方程的解的易错题:一元一次方程的解法:重点:等式的性质,同类项的概念及正确合并同类项,各种情形的一元一次方程
9、的解法;难点:准确运用等式的性质进行方程同解变形(即进行移项,去分母,去括号,系数化一等步骤的符号问题,遗漏问题);学习要点评述:对初学的同学来讲,解一元一次方程的方法很容易掌握,但此处有点类似于前面的有理数混合运算,每个题都感觉会做,但就是不能保证全对。从而在学习时一方面要反复关注方程变形的法则依据,用法则指导变形步骤,另一方面还需不断关注易错点和追求计算过程的简捷。易错范例分析:例1(1)若式子 3nxm+2y4和 -mx5yn-1能够合并成一项,试求m+n的值。(2)下列合并错误的个数是( )5x6+8x6=13x123a+2b=5ab8y2-3y2=56anb2n-6a2nbn=0(A
10、)1个 (B)2个 (C)3个 (D)4个解析:(1)3nxm+2y4和-mx5yn-1能够合并,则说明它们是同类项,即所含字母相同,且相同字母的指数也相同。此题两式均各含三个字母n、x、y和m、x、y,若把m、n分别看成2个字母,则此题显然与概念题设不合,故应该把m、n看作是可由已知条件求出的常数,从而该归并为单项式的系数,再从同类项的概念出发,有: 解得m=3 ,n=5从而m+n=8(2)“合并”只能在同类项之间进行,且只对同类项间的系数进行加减运算化简,这里的实质是逆用乘法对加法的分配律,所以4个合并运算,全部错误,其中、就不是同类项,不可合并,、分别应为:5x6+8x6=13x68y2
11、-3y2=5y2例2.解下列方程(1)8-9x=9-8x(2) (3) (4) 解:(1)8-9x=9-8x -9x+8x=9-8 -x=1 x=1易错点关注:移项时忘了变号;(2) 法一: 4(2x-1)-3(5x+1)=248x-4-15x-3=24-7x=31 易错点关注:两边同乘兼约分去括号,有同学跳步急赶忘了, 4(2x-1)化为8x-1,分配需逐项分配,-3(5x+1)化为-15x+3忘了去括号变号;法二:(就用分数算) 此处易错点是第一步拆分式时将 ,忽略此处有一个括号前面是负号,去掉括号要变号的问题,即 ;(3) 6x-3(3-2x)=6-(x+2)6x-9+6x=6-x-21
12、2x+x=4+913x=13x=1易错点关注:两边同乘,每项均乘到,去括号注意变号;(4) 2(4x-1.5)-5(5x-0.8)=10(1.2-x) 8x-3-25x+4=12-10x -7x=11 初中数学七年级下册易错题第五章 相交线与平行线1.未正确理解垂线的定义1下列判断错误的是( ). A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90的特殊情况,反之,若两
13、直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2下列判断正确的是( ). A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说
14、“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度. 正解:D.3.未准确辨认同位角、内错角、同旁内角3如图所示,图中共有内错角( ). A.2组; B.3组; C.4组; D.5组.错解:A.解析:图中的内错角有AGF与GFD,BGF与GFC,HGF与GFC三组.其中 HGF与GFC易漏掉。正解:B.4.对平行线的概念、平行公理理解有误4下列说法:过两点有且只有一条直线;两条直线不平行必相交;过一点有且只有一条直线与已知直线垂直;过一点有且只有一条直线与已知直线平行.
15、 其中正确的有( ). A.1个; B.2个; C.3个; D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以是错误的,是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5如图所示,下列推理中正确的有( ). 因为14,所以BCAD; 因为23,所以ABCD;因为BCDADC180,所以ADBC;因为12C180,所以BCAD.A.1个; B.2个; C.3个; D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有推理正确. 正解:A.6.混淆平
16、行线的判定和性质、忽略平行线的性质成立的前提条件6如图所示,直线,170,求2的度数. 错解:由于,根据内错角相等,两直线平行,可得12,又因为170,所以270.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系. 正解:因为(已知),所以12(两直线平行,内错角相等),又因为170(已知),所以270.7.对命题这一概念的理解不透彻7判断下列语句是否是命题. 如果是,请写出它的题设和结论. (1)内错角相等;(2)对顶角相等;(3)画一个60
17、的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一 个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的 命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8“如图所示,ABC是ABC平移得到的,在这个平移中,平移的距离
18、是线段AA”这句话对吗? 错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA的长度.正解:错误.第六章 平面直角坐标系1.不能确定点所在的象限1点A的坐标满足,试确定点A所在的象限. 错解:因为,所以,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2求点A(-3,-4)到坐标轴的距离. 错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到
19、轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3. 第八章 二元一次方程组1.不能正确理解二元一次方程组的定义1已知方程组: , , , ,正确的说法是( ). A.只有是二元一次方程组;B.只有是二元一次方程组;C.只有是二元一次方程组;D.只有不是二元一次方程组.错解:A或C.解析:方程组是二元一次方程组,符合定义,方程组是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2用加减法解方程组 . 错解:得,所以,把代入,得,解
20、得.所以原方程组的解是 .错解解析:在加减消元时弄错了符号而导致错误.正解:得,所以,把代入,得,解得.所以原方程组的解是 .3.将方程变形时忽略常数项3利用加减法解方程组 . 错解:2得,解得. 把代入得,解得. 所以原方程组的解是 .错解解析:在2这一过程中只把左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:2得,解得. 把代入得,解得. 所以原方程组的解是 .4.不能正确找出实际问题中的等量关系4两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120,第二车间完成计划的115,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电
21、机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为( ). A. ;B. ;C. .D. .错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数第二车间实际生产台数798台;(2)第一车间计划生产台数第二车间计划生产台数680台.正解:C.第九章 不等式与不等式组1.在运用不等式性质3时,未改变符号方向1利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“”变为“”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,
22、根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2某小店每天需水1m,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.
23、答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3解不等式组 . 错解:由得,由得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由得,由得,所以不等式组无解.第十章 数据的收集、整理与描述1.全面调查与抽样调查选择不当1调查一批药物的药效持续时间,用哪种调查方式? 错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义22006年4月11日文
24、汇报报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4,本科生占79,大专生占13. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况. 错解:如下图所示: 解析:漏掉其他人员4,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是_.错解:捐10元的5人,.解析:该题的错误是因为将5105作为总次数,实际上应是25为总次数,这其实是
25、对频率概念错误理解的结果.正解:0.2.4.列频数分布表时的步骤、方法错误426名学生的身高分别为(身高:cm): 160; 162; 160; 162; 160; 159; 159; 169; 172; 160;161; 150; 166; 165; 159; 154; 155; 158; 174; 161;170; 156; 167; 168; 163; 162.现要列出频率分布表,请你确定起点和分点数据.错解:起点为150.5,分三组,150.5159.5,159.5169.5,169.5172.5.解析:本题产生错误的原因是起点应比最小值略小,组距不相等,前两个过大.正解:起点为149.5,分五组:149.5154.5,154.5159.5,159.5164.5,164.5169.5,169.5174.5.