1、12.2 12.2 三角形全等的条件三角形全等的条件(一一)AB=DE BC=EF CA=FD A=D B=E C=FABCDEF 1、什么叫全等三角形?什么叫全等三角形?能够重合的两个三角形叫能够重合的两个三角形叫 全等三角形全等三角形。2、全等三角形有什么性质?全等三角形有什么性质?1.只给一个条件只给一个条件一组对应边相等或一组对应角相等一组对应边相等或一组对应角相等。只给一条边:只给一条边:只给一个角:只给一个角:606060探究一:探究一:2.给出两个条件:给出两个条件:一边一内角:一边一内角:两内角:两内角:两边:两边:303030303050502cm2cm4cm4cm可以发现按
2、这可以发现按这些条件画的三些条件画的三角形都一定全角形都一定全等。等。3.给出三个条件给出三个条件三条边三条边三个角三个角两角一边两角一边两边一角两边一角 有三边对应相等的两个三角形全等有三边对应相等的两个三角形全等.可以简写成可以简写成 “边边边边边边 或或“SSS SSS ABCDEF用用 数学语言表述数学语言表述:在在ABC和和 DEF中中 ABC DEFSSS AB=DE BC=EF CA=FD 判断两个三角形全等的推理过程,叫做证明三角形判断两个三角形全等的推理过程,叫做证明三角形全等。全等。CABDO议一议:在以下推理中填写需议一议:在以下推理中填写需要补充的条件,使结论成立:要补
3、充的条件,使结论成立:如图,在如图,在AOBAOB和和DOCDOC中中AO=DO(已知已知)_=_(已知已知)BO=CO(已知已知)AOB DOCSSS解:解:ABCDCB理由如下:理由如下:AB=CDAC=DB=SSS SSS 2 2、如图,、如图,D D、F F是线段是线段BCBC上的两点,上的两点,AB=ECAB=EC,AF=EDAF=ED,要使,要使ABFABFECD ECD,还需要条件还需要条件 AEB B D D F F C CA ABCD想一想想一想ABC ()1 1、如图,、如图,AB=CDAB=CD,AC=BDAC=BD,ABCABC和和DCBDCB是否全等?试说是否全等?试
4、说明理由。明理由。DCBBCBCCBCBBF=CD 或或 BD=CF例例1.如以下图,如以下图,ABC是一个刚架,是一个刚架,AB=AC,AD是连接是连接A与与BC中点中点D的支的支架。架。求证:求证:ABD ACD分析:分析:要证明要证明 ABD ACD,首先看这两个三角形的三条边是首先看这两个三角形的三条边是否对应相等。否对应相等。结论:从这题的证明中可以看出,证明是由结论:从这题的证明中可以看出,证明是由题设题设出发,经过一步步的推理,最后推出发,经过一步步的推理,最后推出结论正确的过程。出结论正确的过程。准备条件:证全等时要用的间接准备条件:证全等时要用的间接条件要先证好;条件要先证好
5、;三角形全等书写三步骤:三角形全等书写三步骤:写出在哪两个三角形中写出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明的书写步骤:证明的书写步骤:SSSSSS A=C 小结小结2.三边对应相等的两个三角形全等三边对应相等的两个三角形全等边边边边边边或或SSS;1.知道三角形三条边的长度怎样画三角形。知道三角形三条边的长度怎样画三角形。3、体验分类讨论的数学思想、体验分类讨论的数学思想4、初步学会理解证明的思路、初步学会理解证明的思路作业A.作业本作业本1-4题及画一个三角形题及画一个三角形,是它的三边是它的三边分别为分别为3cm,4cm,3cm和
6、习题精选和习题精选P88 6题题B.作业本作业本1-4题及画一个三角形题及画一个三角形,是它的三边分是它的三边分别为别为3cm,4cm,3cm和习题精选和习题精选P88 8题题C.作业本作业本1-4,6,7题及画一个三角形题及画一个三角形,是它的是它的三边分别为三边分别为3cm,4cm,3cm:如图如图,AC=AD,BC=BD.求证求证:CD.ABCD解解:在在ACB 和和 ADB中中 AC =A D BC =BD A B =A B (公共公共边边ACB ADBSSS议一议:议一议:CD.12.2 12.2 三角形全等的判定三角形全等的判定(一一)AB=DE BC=EF CA=FD A=D B
7、=E C=FABCDEF 1、什么叫全等三角形?什么叫全等三角形?能够重合能够重合的两个三角形叫的两个三角形叫 全等三角形全等三角形。2、全等三角形有什么性质?全等三角形有什么性质?1.只给一个条件一组对应边相等或一组对应角相等。只给一个条件一组对应边相等或一组对应角相等。只给一条边:只给一条边:只给一个角:只给一个角:606060探究:探究:2.给出两个条件:给出两个条件:一边一内角:一边一内角:两内角:两内角:两边:两边:303030303050502cm2cm4cm4cm可以发现按这可以发现按这些条件画的三些条件画的三角形都不能保角形都不能保证一定全等。证一定全等。三边对应相等的两个三角
8、形全等可三边对应相等的两个三角形全等可以简写为以简写为“边边边或边边边或“SSS。先任意画出一个先任意画出一个ABC再画一个再画一个DEF,使,使AB=DE,BC=EF,AC=DF.把画好的把画好的ABC剪下来,放到剪下来,放到DEF上,它们全等吗?上,它们全等吗?ABCDEF思考:你能用思考:你能用“边边边解释三角形具边边边解释三角形具有稳定性吗?有稳定性吗?判断两个三角形全等的推理过程,叫做证明三角形判断两个三角形全等的推理过程,叫做证明三角形全等。全等。ABCDEF用用 数学语言表述:数学语言表述:在在ABC和和 DEF中中 ABC DEFSSS AB=DE BC=EF CA=FD例例1
9、.如以下图,如以下图,ABC是一个刚架,是一个刚架,AB=AC,AD是连接是连接A与与BC中点中点D的支的支架。架。求证:求证:ABD ACD分析:分析:要证明要证明 ABD ACD,首先看这两个三角形的三条边是首先看这两个三角形的三条边是否对应相等。否对应相等。结论:从这题的证明中可以看出,证明是由结论:从这题的证明中可以看出,证明是由题设出发,经过一步步的推理,最后推题设出发,经过一步步的推理,最后推出结论正确的过程。出结论正确的过程。如何利用直尺和圆规做一个角等于角?如何利用直尺和圆规做一个角等于角?:AOB,求作:求作:AoB,使:使:AoB=AOB 1、作任一射线、作任一射线oA 2
10、、以点、以点O为圆心,适当长为半径作弧交为圆心,适当长为半径作弧交OA、OB于点于点M、N,3、以点、以点o为圆心,同样的长为半径作弧交为圆心,同样的长为半径作弧交oB于点于点P 4、以点、以点P为圆心,以为圆心,以MN为半径作弧交前弧于点为半径作弧交前弧于点A 5、过点、过点A作射线作射线OA.那么那么AoB=AOB准备条件:证全等时要用的间接准备条件:证全等时要用的间接条件要先证好;条件要先证好;三角形全等书写三步骤:三角形全等书写三步骤:写出在哪两个三角形中写出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明的书写步骤:证明的书写步骤:AC
11、=FE,BC=DE,点,点A,D,B,F在一条在一条直线上,直线上,AD=FB如图,要用如图,要用“边边边边边边证明证明ABC FDE,除了中的,除了中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能以外,还应该有什么条件?怎样才能得到这个条件?得到这个条件?解:要证明解:要证明ABC FDE,还应该有还应该有AB=DF这个条件这个条件 DB是是AB与与DF的公共局部,的公共局部,且且AD=BF AD+DB=BF+DB 即即 AB=DF 如图,如图,AB=AC,AE=AD,BD=CE,求证:求证:AEB ADC。证明:证明:BD=CE BD-ED=CE-ED,即即BE=CD。CABDE在在AEB和和ADC中,中,AB=ACAE=ADBE=CD AEB ADC (sss)小结小结2.三边对应相等的两个三角形全等边边边三边对应相等的两个三角形全等边边边或或SSS;3.书写格式:准备条件;书写格式:准备条件;三角形三角形全等书写的三步骤。全等书写的三步骤。1.知道三角形三条边的长度怎样画三角形。知道三角形三条边的长度怎样画三角形。作业作业:P43 第第1题题