1、教育部教育部“精英杯公开课大赛简介精英杯公开课大赛简介 2021年6月,由教育学会牵头,教材编审委员会具体组织实施,在全国8个城市,设置了12个分会场,范围从“小学至高中全系列部编新教材进行了统一的培训和指导。每次指導,都輔以精彩的優秀示範課。在這些示範課中,不乏全國名師和各省名師中的佼佼者。他们的课程,无论是在内容和形式上,都是经过认真研判,把各学科的核心素养作为教学主线。既涵盖城市中小学、又包括乡村大局部学校的教学模式。適合全國大局部教學大區。本課件就是從全國一等獎作品中,优选出的具有代表性的作品。示范性强,有很大的推广价值。切线的性质与判定 学练优九年级数学下JJ 教学课件导入新课讲授新
2、课当堂练习课堂小结第二十九章 直线与圆的位置关系学习目标1.会判定一条直线是否是圆的切线并会过圆上一点作圆的切线.2.理解并掌握圆的切线的判定定理及性质定理.重点3.能运用圆的切线的判定定理和性质定理解决问题.难点导入新课导入新课情境引入转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?都是沿切线方向飞出的.生活中常看到切线的实例,如何判断一条直线是否为切线呢?学完这节课,你就都会明白.思考:如图,如果直线l是 O 的切线,点A为切点,那么OA与l垂直吗?AlO直线l是 O 的切线,A是切点,直线l OA.切线的性质定理一 切线性质 圆的切线垂直于经过切点的半径 应用格式讲
3、授新课讲授新课 小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.1假设假设AB与与CD不垂直不垂直,过点过点O作一条直作一条直径垂直于径垂直于CD,垂足为垂足为M,2那么那么OMOA,即圆心到直线即圆心到直线CD的距离的距离小于小于 O的半径的半径,因此因此,CD与与 O相交相交.这与这与条件条件“直线与直线与 O相切相矛盾相切相矛盾.CDBOA3所以所以AB与与CD垂直垂直.M证法1:反证法.性质定理的证明反证法的证明视频CDOA证法2:构造法.作出小 O的同心圆大 O,CD切小 O于点A,且A点为CD的中点,连接OA,根据垂径定理,那么CD OA,即圆的切线垂直于经过切点的半径1.如
4、图:在 O中,OA、OB为半径,直线MN与 O相切于点B,假设ABN=30,那么AOB=.2.如图AB为 O的直径,D为AB延长线上一点,DC与 O相切于点C,DAC=30,假设 O的半径长1cm,那么CD=cm.603练一练 利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.方法总结例1 如图,PA为 O的切线,A为切点直线PO与 O交于B、C两点,P30,连接AO、AB、AC.(1)求证:ACBAPO;(2)若AP ,求 O的半径3解析:(1)根据条件我们易得CAB=PAO=90,由P=30可得出AOP=60,那么C=30=P,即AC
5、=AP;这样就凑齐了角边角,可证得ACB APO;OABPC(2)由条件可得AOP为直角三角形,因此可以通过解直角三角形求出半径OA的长.(1)求证:ACBAPO;OABPC在ACB和APO中,BACOAP,ABAO,ABOAOB,ACBAPO.(1)证明:PA为 O的切线,A为切点,又P30,AOB60,又OAOB,AOB为等边三角形ABAO,ABO60.又BC为 O的直径,BAC90.OAP90.(2)假设AP ,求 O的半径OABPC3AO1,CBOP2,OB1,即 O的半径为1.(2)解:在RtAOP中,P30,AP ,3ABC问题:圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线
6、?观察:1 圆心O到直线AB的距离和圆的半径有什么数量关系?2二者位置有什么关系?为什么?切线的判定定理二O经过半径的外端并且垂直于这条半径的直线是圆的切线.OA O的半径 OA于A O的切线ABC 切线的判定定理应用格式O要点归纳判一判:以下各直线是不是圆的切线?如果不是,请说明为什么?O.lAO.lABAOl(1)(2)(3)(1)不是,因为没有垂直.(2),(3)不是,因为没有经过半径的外端点A.在此定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线.注意判断一条直线是一个圆的切线有三个方法:1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线
7、;2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.lAlOlrd要点归纳例2 如图,ABC=45,直线AB是O上的直径,点A,且AB=AC.求证:AC是O的切线.解析:直线AC经过半径的一端,因此只要证OA垂直于AB即可.证明:AB=AC,ABC45,ACBABC45.BAC=180-ABC-ACB=90.AB是O的直径,AC是O的切线.AOCB例3:直线AB经过O上的点C,并且OA=OB,CA=CB.求证:直线AB是O的切线.分析:由于AB过 O上的点C,所以连接OC,只要证明ABOC即可.证明:连接OC
8、(如图).OAOB,CACB,OC是等腰三角形OAB底边AB上的中线.ABOC.OC是 O的半径,AB是 O的切线.例4 如图,ABC 中,AB AC,O 是BC的中点,O 与AB 相切于E.求证:AC 是 O 的切线BOCEA分析:根据切线的判定定理,要证明AC是 O的切线,只要证明由点O向AC所作的垂线段OF是 O的半径就可以了,而OE是 O的半径,因此只需要证明OF=OE.F证明:证明:连接OE,OA,过O 作OF AC.O 与AB 相切于E ,OE AB.又ABC 中,AB AC,O 是BC 的中点AO 平分BAC,FBOCEAOE OF.OE 是 O 半径,OF OE,OF AC.A
9、C 是 O 的切线又又OE AB,OFAC.如图,直线AB经过O上的点C,并且OAOB,CACB求证:直线AB是O的切线.CBAO如图,OAOB=5,AB8,O的直径为6.求证:直线AB是 O的切线.CBAO比照思考作垂直连接方法归纳 (1)有交点,连半径,证垂直;(2)无交点,作垂直,证半径.证切线时辅助线的添加方法例1例2有切线时常用辅助线添加方法 (1)见切点,连半径,得垂直.切线的其他重要结论 (1)经过圆心且垂直于切线的直线必经过切点;2经过切点且垂直于切线的直线必经过圆心经过切点且垂直于切线的直线必经过圆心.要点归纳当堂练习当堂练习 1.判断以下命题是否正确.经过半径外端的直线是圆
10、的切线.垂直于半径的直线是圆的切线.过直径的外端并且垂直于这条直径的直线是圆的切线.和圆只有一个公共点的直线是圆的切线.过直径一端点且垂直于直径的直线是圆的切线.3.如图,在O的内接四边形ABCD中,AB是直径,BCD=120,过D点的切线PD与直线AB交于点P,那么ADP的度数为 A40 B35 C30 D452.如以以下图,A是O上一点,且AO=5,PO=13,AP=12,那么PA与O的位置关系是 .APO第2题PO第3题DABC相切C4.如图,O切PB于点B,PB=4,PA=2,那么 O的半径多少?OPBA解:连接OB,那么OBP=90.设 O的半径为r,那么OA=OB=r,OP=OA+
11、PA=2+r.在RtOBP中,OB2+PB2=PO2,即r2+42=(2+r)2.解得 r=3,即 O的半径为3.证明:连接OP.AB=AC,B=C.OB=OP,B=OPB,OBP=C.OPAC.PEAC,PEOP.PE为 O的切线.5.如图,ABC中,AB=AC,以AB为直径的 O交边BC于P,PEAC于E.求证:PE是 O的切线.6.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的 O与BC相切于点M.求证:CD与 O相切证明:连接OM,过点O作ONCD于点N,O与BC相切于点M,OMBC.又ONCD,O为正方形ABCD对角线AC上一点,OMON,CD与 O相切MN7.
12、:ABC内接于O,过点A作直线EF.1如图1,AB为直径,要使EF为O的切线,还需添加的条件是只需写出两种情况:_ ;_.2如图2,AB是非直径的弦,CAE=B,求证:EF是O的切线.BAEFCAE=BAFEOAFEOBCBC图1图2证明:连接AO并延长交O于D,连接CD,那么AD为O的直径.D+DAC=90,D与B同对 ,D=B,又 CAE=B,D=CAE,DAC+EAC=90,EF是O的切线.ACAFEOBC图2D切 线 的性质有1个公共点d=r性质定理圆的切线垂直于经过切点的半径有切线时常用辅助线添加方法:见切线,连切点,得垂直.课堂小结课堂小结切 线 的判定方法定义法数量关系法判定定理
13、1个公共点,那么相个公共点,那么相切切d=r,那么相,那么相切切经过圆的半径的外端且垂直于这条半径的直线是圆的切线.证切线时常用辅助线添加方法:有公共点,连半径,证垂直;无公共点,作垂直,证半径.角平分线第一章 三角形的证明导入新课讲授新课当堂练习课堂小结 八年级数学下BS 教学课件 第第1 1课时课时 角平分线角平分线 1.会表达角平分线的性质及判定;重点2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理,能应用这两个性质解决一些简单的实际问题;难点3.经历探索、猜测、证明的过程,进一步开展学生的推理证明意识和能力学习目标情境引入 如图,要在S区建一个贸易市
14、场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处?比例尺为120000DCS解:作夹角的角平分线OC,截取OD=2.5cm,D即为所求.O导入新课导入新课1.1.操作测量:取点P的三个不同的位置,分别过点P作PDOA,PE OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:2.观察测量结果,猜测线段PD与PE的大小关系,写出结:_ PD PE 第一次第一次第二次第二次 第三次第三次 COBAPD=PEpDE实验:OC是AOB的平分线,点P是射线OC上的 任意一点猜测:角的平分线上的点到角的两边的距离相等.角平分线的性质一讲授新课讲授新课验证猜测:如图
15、,AOC=BOC,点P在OC上,PDOA,PEOB,垂足分别为D,E.求证:PD=PE.PAOBCDE证明:PDOA,PEOB,PDO=PEO=90.在PDO和和PEO中,PDO=PEO,AOC=BOC,OP=OP,PDO PEO(AAS).PD=PE.角的平分线上的点到角的两边的距离相等u 性质定理:角的平分线上的点到角的两边的距离相等.应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离.定理的作用:证明线段相等.u应用格式:OP 是AOB的平分线,PD=PE在角的平分线上的点到这个角的两边的距离相等.推理的理由有三个,必须写完全,不能少了任何一个.知识要点PDOA,P
16、EOB,BADOPEC判一判:1 如下左图,AD平分BAC,=,()在角的平分线上的点到这个角的两边的距离相等BD CDBADC(2)如上右图,如上右图,DCAC,DBAB .=,()在角的平分线上的点到这个角的两边的距离相等BD CDBADC例1:如图,在ABC中,AD是它的角平分线,且BD=CD,DEAB,DFAC.垂足分别为E,F.求证:EB=FC.ABCDEF证明:AD是BAC的角平分线,DEAB,DFAC,DE=DF,DEB=DFC=90.在RtBDE 和 RtCDF中,DE=DF,BD=CD,RtBDE RtCDF(HL).EB=FC.例2:如图,AM是BAC的平分线,点P在AM上
17、,PDAB,PEAC,垂足分别是D、E,PD=4cm,那么PE=_cm.BACPMDE4温馨提示:存在两条垂线段直接应用ABCP变式:如 图,在RtABC中,AC=BC,C90,AP平分BAC交BC于点P,假设PC4,AB=14.1那么点P到AB的距离为_.D4温馨提示:存在一条垂线段构造应用ABCP变式:如图,在Rt ABC中,AC=BC,C900,AP平分BAC交BC于点P,假设PC4,AB=14.2求APB的面积.D14PDBCPDPBDBPCPBDBBCDBADDBAB3求PDB的周长.ABPD=28.12PDBS由垂直平分线的性质,可知,PD=PC=4,=1.应用角平分线性质:存在存
18、在角平分线角平分线涉及涉及距离问题距离问题2.联系角平分线性质:面积面积周长周长条件条件知识与方法知识与方法利用角平分线的性利用角平分线的性质所得到的等量关质所得到的等量关系进行转化求解系进行转化求解角平分线的判定二PAOBCDE角的内部到角的两边距离相等的点在角的平分线上角的内部到角的两边距离相等的点在角的平分线上思考:交换角的平分线性质中的和结论,你能得到什么结论,这个新结论正确吗?角平分线的性质:角平分线的性质:角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等.思考:这个结论正确吗?逆命题:如图,PDOA,PEOB,垂足分别是D、E,PD=PE.求证:点P在AOB
19、的角平分线上.证明:作射线OP,点P在AOB 角的平分线上.在RtPDO和RtPEO 中,全等三角形的对应角相等.OP=OP公共边,公共边,PD=PE,BADOPEPDOA,PEOB.PDO=PEO=90,RtPDO RtPEO HL.AOP=BOP证明猜测u 判定定理:角的内部到角的两边的距离相等的点在角的平分线上.PAOBCDE应用所具备的条件:(1)位置关系:点在角的内部;(2)数量关系:该点到角两边的距离相等.定理的作用:判断点是否在角平分线上.u应用格式:PDOA,PEOB,PD=PE.点点P 在AOB的平分线上.知识总结例3:如图,CBD和BCE的平分线相交于点F,求证:点F在DA
20、E的平分线上 证明:过点F作FGAE于G,FHAD于H,FMBC于M.点F在BCE的平分线上,FGAE,FMBC.FGFM.又点F在CBD的平分线上,FHAD,FMBC,FMFH,FGFH.点F在DAE的平分线上.GHMABCFED例4 如图,某地有两所大学和两条交叉的公路图中点M,N表示大学,OA,OB表示公路,现方案修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计(尺规作图,不写作法,保存作图痕迹)ONMABONMABP方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线的垂直平分线上.解
21、:如以以下图:归纳总结图形已知条件结论PCPCOP平分AOBPDOA于DPEOB于EPD=PEOP平分AOBPD=PEPDOA于DPEOB于E角的平分线的判定角的平分线的性质当堂练习当堂练习2.ABC中中,C=90,AD平分平分CAB,且且BC=8,BD=5,那么点那么点D到到AB的距离是的距离是 .ABCD3E1.如图,如图,DEAB,DFBG,垂足分别,垂足分别是是E,F,DE=DF,EDB=60,那么,那么 EBF=度,度,BE=.60BFEBDFACG3.用三角尺可按下面方法画角平分线:在用三角尺可按下面方法画角平分线:在AOB的两边上,分的两边上,分别取别取OM=ON,再分别过点再分别过点M,N作作OA,OB的垂线,交点为的垂线,交点为P,画,画射线射线OP,那么那么OP平分平分AOB.为什么?为什么?AOBMNP解:在RTMOP和RTNOP中,OM=ON,OP=OP,RTMOP RTNOPHL.MOP=NOP,即OP平分AOB.课堂小结课堂小结角平分线性 质定 理一个点:角平分线上的点;二距离:点到角两边的距离;两相等:两条垂线段相等辅助线添加过角平分线上一点向两边作垂线段判 定定 理在一个角的内部,到角两边距离相等的点在这个角的平分线上