1、情境引入学习目标1.会用配方法或公式法将一般式yax2bxc化成顶点式y=a(x-h)2+k.(难点)2.会熟练求出二次函数一般式yax2bxc的顶点坐标、对称轴.(重点)导入新课导入新课复习引入y=a(x-h)2+ka0a0开口方向顶点坐标对称轴增减性极值向上向下(h,k)(h,k)x=hx=h当xh时,y随着x的增大而增大.当xh时,y随着x的增大而减小.x=h时,y最小最小=kx=h时,y最大最大=k抛物线y=a(x-h)2+k可以看作是由抛物线y=ax2经过平移得到的.顶点坐标顶点坐标对称轴对称轴最值最值y=-2x2y=-2x2-5y=-2(x+2)2y=-2(x+2)2-4y=(x-
2、4)2+3y=-x2+2xy=3x2+x-6(0,0)y轴0(0,-5)y轴-5(-2,0)直线x=-20(-2,-4)直线x=-2-4(4,3)直线x=43?讲授新课讲授新课二次函数y=ax2+bx+c的图象和性质一探究归纳我们已经知道y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论 的图象和性质?216212yxx问题1 怎样将 化成y=a(x-h)2+k的形式?216212yxx216212yxx配方可得2221(126642)2xx21(1242)2xx2221(126)6422xx21(6)62x21(6)3.2x想一想:配方的方法及步骤是什么?配方216212xxy你知道
3、是怎样配方的吗?(1)“提”:提出二次项系数;(2)“配”:括号内配成完全平方;(3)“化”:化成顶点式.提示:配方后的表达式通常称为配方式或顶点式.3)6(212xy问题2 你能说出 的对称轴及顶点坐标吗?21(6)32yx答:对称轴是直线x=6,顶点坐标是(6,3).问题3 二次函数 可以看作是由 怎样平移得到的?21(6)32yx212yx答:平移方法1:先向上平移3个单位,再向右平移6个单位得到的;平移方法2:先向右平移6个单位,再向上平移3个单位得到的.问题4 如何画二次函数 的图象?216212yxx9 98 87 76 65 54 43 3x先利用图形的对称性列表21(6)32y
4、x7.553.533.557.5510 xy510然后描点画图,得到图象如右图.O问题5 结合二次函数 的图象,说出其性质.216212yxx510 xy510 x=6当x6时,y随x的增大而增大.O例1 画出函数 的图象,并说明这个函数具有哪些性质.21522yxx x-2-101234y-6.5-4-2.5-2-2.5-4-6.5解:函数 通过配方可得 ,先列表:21522yxx 21(1)22yx 典例精析2xy-204-2-4-4-6-8然后描点、连线,得到图象如下图.由图象可知,这个函数具有如下性质:当x1时,函数值y随x的增大而增大;当x1时,函数值y随x的增大而减小;当x=1时,
5、函数取得最大值,最大值y=-2.将一般式y=ax2+bx+c化成顶点式y=a(x-h)2+k二 我们如何用配方法将一般式y=ax2+bx+c(a0)化成顶点式y=a(x-h)2+k?y=ax+bx+c cababxa4222cababxabxa22222cxabxa2(提取a,使二次项系数为1)(配方:加上并减去一次项系数一 半的平方)(写成顶点式)(写成完全平方式)归纳总结二次函数y=ax2+bx+c的图象和性质 一般地,二次函数y=ax2+bx+c的可以通过配方化成y=a(x-h)2+k的形式,即2224().24bacbyaxbxca xaa因此,抛物线y=ax2+bx+c 的顶点坐标是
6、:对称轴是:直线24(,).24bacbaa.2bxa(1)(2)xyOxyO如果a0,当x 时,y随x的增大而增大.如果a0,当x 时,y随x的增大而减小.2bxa 2bxa 2ba2ba2ba2ba顶点坐标顶点坐标对称轴对称轴最值最值y=-x2+2xy=-2x2-1y=9x2+6x-5(1,3)x=1最大值1(0,-1)y轴最大值-1最小值-6(,-6)13直线x=13课堂练习1、求二次函数y=2x2-8x+7图象的对称轴和顶点坐标.2287yxx22(44)87xx 22(4)7xx22(2)1.x 因此,二次函数y=2x2-8x+7图象的对称轴是直线x=2,顶点坐标为(2,-1).解:课堂练习2、3.根据公式确定下列二次函数图象的对称轴和顶点坐标:22(1)21213;(2)580319;1(3)22;2(4)12.yxxyxxyxxyxx 直线x=33,5直线x=88,1直线x=1.2559,48直线x=0.519,24课堂小结课堂小结24(,)24bacbaa2bxa y=ax2+bx+c(a 0)(一般式一般式)(顶点式顶点式)224()24bacbya xaa