1、第第4 4章章 平行四边形复习平行四边形复习 本章要点聚焦本章要点聚焦一、四边形的概念一、四边形的概念1.1.定义:在同一平面内,由不在同一直线上的四条线段定义:在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形首尾顺次相接组成的图形.2.2.四边形的内角和与外角和均为四边形的内角和与外角和均为360360.3.3.四边形具有不稳定性四边形具有不稳定性.4.4.多边形内角和定理:多边形内角和定理:n n边形的内角和等于边形的内角和等于(n-2)(n-2)1801805.5.多边形外角和定理:多边形外角和定理:n n边形的外角和等于边形的外角和等于360360.6.6.多边形的对角线
2、多边形的对角线.二二.重要知识规律总结重要知识规律总结:2 23 3)n n(n n1.1.多边形的对角线多边形的对角线.n n边形的内角和为:边形的内角和为:n n2)2)180180(n3).(n3).2.2.多边形的内角和公式多边形的内角和公式.3.3.平行四边形的性质有:平行四边形的性质有:平行四边形的平行四边形的对边相等对边相等平行四边形的平行四边形的对边平行对边平行平行四边形的平行四边形的对角相等对角相等平行四边形的平行四边形的对角线互相平分对角线互相平分平行四边形平行四边形邻角互补邻角互补中心对称中心对称两个推论两个推论:定理定理2 2:两组对边分别相等两组对边分别相等的四边形是
3、的四边形是平行四边形平行四边形.定义定义:两组对边分别平行两组对边分别平行的四边形是的四边形是平行四边形平行四边形.定理定理1:1:一组对边平行且相等一组对边平行且相等的四边形是的四边形是平行四边形平行四边形.4.4.平行四边形的判定平行四边形的判定:平行四边形平行四边形定理定理4 4:两组对角分别相等两组对角分别相等的四边形是的四边形是平行四边形平行四边形.推论推论1:有有一组对边平行且有一组对角相等一组对边平行且有一组对角相等的四边形是的四边形是平行四边形平行四边形.三角形的中位线平行于第三边,并且等三角形的中位线平行于第三边,并且等于第三边的一半于第三边的一半.5.5.三角形的中位线三角
4、形的中位线6.6.逆命题与逆定理逆命题与逆定理.重要逆定理重要逆定理:如果三角形两边的平方和等于第三边的平方如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形那么这个三角形是直角三角形定理定理1:1:到一条线段的两个端点的距离相等的点到一条线段的两个端点的距离相等的点,在在这条线段的垂直平分线上这条线段的垂直平分线上.定理定理2:2:如果三角形一边上的中线等于这边一半如果三角形一边上的中线等于这边一半,那那么这个三角形是直角三角形么这个三角形是直角三角形定理定理3:3:7 7、中心对称、中心对称一个图形绕一点旋转一个图形绕一点旋转180180度后与原度后与原来图形重合来图形重合
5、.中心对称图形中心对称图形:关于一点成关于一点成中心对称中心对称:一个图形绕一点旋转一个图形绕一点旋转180度后与度后与另一图形互相重合另一图形互相重合.性质性质:对称中心平分连接两个对称点的线段对称中心平分连接两个对称点的线段直角坐标系中直角坐标系中,点点(x,yx,y)关于原点对称的点是关于原点对称的点是(-x,-y-x,-y)3 3、如图,在锐角、如图,在锐角ABCABC中,中,CDCD、BEBE分分别是别是ABAB、ACAC边上的高,且边上的高,且CDCD、BEBE交于一点交于一点P P,假设,假设A=50A=50,那么,那么BPCBPC的度数是的度数是 ()()4 4、一个正多边形它
6、的一个外角等于与它相邻的内角的、一个正多边形它的一个外角等于与它相邻的内角的四分之一,这个多边形是正边形。四分之一,这个多边形是正边形。B B1 1、在四边形中、在四边形中ABCDABCD,A=500A=500,B=900B=900,C=410C=410,那么那么D=D=;2 2、一个多边形的内角和等于、一个多边形的内角和等于10801080,这个多边形的边,这个多边形的边数是数是A A十十1791790 0根底练习根底练习5 5、下例不能判定四边形、下例不能判定四边形ABCDABCD是平行四边形的是是平行四边形的是 A A、AB=CD AD=BC BAB=CD AD=BC B、AB=CD A
7、BCDAB=CD ABCD C C、AB=CD ADBC DAB=CD ADBC D、AB CD ADBCAB CD ADBC6 6、如下图,在、如下图,在ABCABC中,中,D D、E E、F F分别为分别为ABAB、BCBC、CACA边的中点,边的中点,那么图中共有平行四边形那么图中共有平行四边形()()个个 个个 个个 个个 A D F EB C7 7、如图、如图 ABCDABCD的对角线的对角线BDBD上有两点上有两点E E、F F,要使四边形,要使四边形AECFAECF是平是平行四边形,还需要增加的一个条件是行四边形,还需要增加的一个条件是 (填上你认为正确的一(填上你认为正确的一个
8、即可,不必考虑所有可能情形),并写出你的证明过程。个即可,不必考虑所有可能情形),并写出你的证明过程。C CC CBE=DFBE=DF、BF=DEBF=DE,AEFCAEFC、AFECAFEC8 8、如图在、如图在 ABCDABCD中中CEABCEAB,E E为垂足,为垂足,若若A=125A=1250 0,那么,那么BCE=BCE=。A DE B C9 9、如图在、如图在 ABCABC中中,EFAB,DE:EA=2:3,EF=4,EFAB,DE:EA=2:3,EF=4,则则CD=CD=。D C E F A B A D B C1010、如图在、如图在 ABCDABCD中中,AD=5,AB=3,A
9、E,AD=5,AB=3,AE平分平分 BADBAD交交BCBC于于点点E,E,则则BE=BE=,。A D OB C1111、在、在 ABCDABCD中,对角线中,对角线ACAC、BDBD相交于相交于O O点,点,AC=10,BD=8AC=10,BD=8,则,则ADAD的取值范围是的取值范围是()()A.AD A.AD1 B.AD1 B.AD9 9 C.1 C.1ADAD9 D.AD9 D.AD0 035350 010103 32 2C C1212、判断题、判断题:1 1邻角互补的四边形是平行四边形邻角互补的四边形是平行四边形.2 2一组对边平行一组对边平行,另一组对边相等的四边形是另一组对边相
10、等的四边形是平行四边形平行四边形.3 3一组对边平行一组对边平行,一组对角相等的四边形是一组对角相等的四边形是平行四边形平行四边形.4 4对角线相等的四边形是平行四边形对角线相等的四边形是平行四边形.1313、某人到瓷砖商店去购置一种多边形形状的瓷砖,用、某人到瓷砖商店去购置一种多边形形状的瓷砖,用来铺设无缝地板他购置的瓷砖形状不可以是来铺设无缝地板他购置的瓷砖形状不可以是 A A正三角形正三角形 B B正四边形正四边形 C C正八边形正八边形 D D正六边形正六边形 1414、平行四边形一边长为、平行四边形一边长为12cm12cm,那么它的两条,那么它的两条对角线的长度可能是对角线的长度可能
11、是 A A8cm8cm和和14cm 14cm B B10cm10cm和和14cm 14cm C C18cm18cm和和20cm 20cm D D10cm10cm和和34cm34cmC CC C1515、在平行四边形、在平行四边形ABCDABCD中中,AC=10,BD=8,AC=10,BD=8,那么那么ABAB的取值的取值范围是范围是()()A A、2AB18 B2AB18 B、1AB9 1AB2 DAB2 D、AB9AB91616、平行四边形一边长为、平行四边形一边长为 10,10,那么它的两条对角线可那么它的两条对角线可以是以是()()A A、6,8 B6,8 B、8,12 8,12 C C
12、、8,14 D8,14 D、6,146,14B BC C 例题解析例题解析【例例1 1】如图,在如图,在 ABCDABCD中,中,O O是对角线是对角线ACAC的中点,过的中点,过O O点作直线点作直线EFEF分别交分别交BCBC、ADAD于于E E、F.F.(1)(1)求证:求证:BE=DF.BE=DF.(2)(2)若若ACAC、EFEF将将 ABCDABCD分成的四部分的面积相等,指分成的四部分的面积相等,指出出E E点的位置,并说明理由点的位置,并说明理由.【例【例2 2】如下图,如下图,ABCD ABCD的周长为的周长为30cm30cm,AEBCAEBC于于E E点,点,AFCDAFC
13、D于于F F点,且点,且AEAF=23AEAF=23,C=120C=120,求,求S S ABCD.ABCD.27 (cm2).3 C23,-2 C-23,2 【例例3 3】如图如图RtRtOABOAB的两条直角边都在坐标轴上,的两条直角边都在坐标轴上,AO=2AO=2,OBA=30OBA=300 0,求以,求以O O、A A、B B为其中三个顶点的为其中三个顶点的平行四边形的第四个顶点平行四边形的第四个顶点C C的坐标。的坐标。C23,2 A O B 【例【例4 4】如图平行四边形】如图平行四边形ABCDABCD的周长是的周长是1414,两条对角,两条对角线线ACAC:BD=2BD=2:3
14、3,ACAC与与BDBD交于交于O O,AOBAOB和和BOCBOC的周长和是的周长和是1717,那么那么AC=AC=,BD=BD=。A D OB C【例【例5 5】如图在】如图在ABCABC中点中点D D、E E分别是分别是ABAB,ACAC边的中点,边的中点,假设把假设把ADEADE饶着点饶着点E E顺时针旋转顺时针旋转18001800得到得到CEFCEF。1 1请指出图中哪些线段与线段请指出图中哪些线段与线段CFCF相等;相等;2 2试判断四边形试判断四边形DBCFDBCF是怎样的四边形?证明你的结论。是怎样的四边形?证明你的结论。A AE EF FD DB BC C2 2、四边形、四边
15、形ABCDABCD中,中,AD/BCAD/BC,那么,那么:的值可能是的值可能是 1 1、在一个四边形中,、在一个四边形中,:,求这个四边形各内角的度数?:,求这个四边形各内角的度数?A A、:、:5 5:B B、:、:C C、:、:5 5:4 D4 D、:、:5 5:3 3、一个多边形、一个多边形,除了一个内角外除了一个内角外,其余内角和为其余内角和为12051205度度,那么这个内角是多少度那么这个内角是多少度,这是个几边形这是个几边形?D D4 4、如图、如图,在在ABCABC中中,AB=AC=5,D,AB=AC=5,D是是BCBC上的点上的点,DEAB,DEAB交交ACAC于点于点E,
16、DFACE,DFAC交交ABAB于点于点F,F,那么四边形那么四边形AFDEAFDE的周长是的周长是()()B B5 5、已知已知:如图,在:如图,在 ABCDABCD中,中,E E,F F是对角线是对角线ACAC上的两上的两点,且点,且AE=CFAE=CF,求证求证:四边形:四边形BEDFBEDF是平行四边形是平行四边形 6 6.已知已知:如图,在:如图,在ABCDABCD中,中,E E,F F分别是分别是ADAD,BCBC的中点的中点求证求证:MNBCMNBC,且,且MN=BCMN=BC127 7、已知如图在、已知如图在 ABCDABCD中中,过点过点O O做任意直线与一组做任意直线与一组
17、对边分别交于点对边分别交于点E E和和F,F,求证:求证:OE=OFOE=OFB BD DC CA AO OE EF FA AB BC CD DO O8 8、如图,、如图,ABCDABCD的周长为的周长为cm,Ocm,O是对角线是对角线ACAC和和BDBD的交点的交点()若()若ABCABC的周长是的周长是18cm,18cm,求求OCOC的长的长()若()若OABOAB的周长比的周长比OBCOBC的周长短的周长短cmcm,求,求ABAB的长的长4cm4cm3cm3cmE ED DA AC CB BF FO O变式:如图四边形变式:如图四边形ABCDABCD和四边形和四边形BFDEBFDE都是平
18、行都是平行四边形四边形,求证:求证:AE=CFAE=CF9 9、如图在、如图在 ABCDABCD中中,E,E、F F是对角线是对角线ACAC上的两点,且上的两点,且AE=CF,AE=CF,求证:求证:四边形四边形BEDFBEDF是平行四边形是平行四边形1010、:如图如图,四边形四边形ABCDABCD是平行四边形是平行四边形,ADEADE和和BCFBCF都是等边三角形都是等边三角形.求证求证:BD:BD和和EFEF互相平分互相平分.ABCFDE1111、:如图如图,O,O是等边三角形是等边三角形ABCABC内任意一内任意一点点,ODBC,OEAC,OFAB,ODBC,OEAC,OFAB,点点D
19、,E,FD,E,F分别在分别在AB,BC,ACAB,BC,AC上上.求证求证:OD+OE+OF=BC.:OD+OE+OF=BC.A AF FO OE ED DB BC CM MN N1212、请说出、请说出“等腰三角形两腰上的高相等的等腰三角形两腰上的高相等的逆命题这个逆命题是真命题吗?请证明你的逆命题这个逆命题是真命题吗?请证明你的判断判断.作图应用作图应用3 3、如图,在、如图,在 ABCDABCD中,两条对角线相交于点中,两条对角线相交于点O O,E E、F F、G G、H H分别是分别是AOAO、BOBO、COCO、DODO的中点,以图的中点,以图中的点为顶点,尽可能多地画出平行四边形
20、。中的点为顶点,尽可能多地画出平行四边形。A AD DC CB BE EF FG GH HO Ow我们知道我们知道,三角形的三条中线交于一点三角形的三条中线交于一点.这一点这一点 叫做三角形的叫做三角形的重心重心.w三角形的重心分每一条中线的比为三角形的重心分每一条中线的比为1212(重心到每边的中点距离重心到每边的中点距离重心重心到所对角的顶点的距离到所对角的顶点的距离).).w你能证明这个命题吗你能证明这个命题吗?w三角形的重心有一个重要的几何性质三角形的重心有一个重要的几何性质:ABCDEFG探索提高探索提高证明一:连结证明一:连结EFEF,利用三角形的中位线按理证明,利用三角形的中位线
21、按理证明w:如图如图,AE,BF,CD,AE,BF,CD是是ABCABC的三条中线的三条中线,且相交于点且相交于点G.G.w分析分析:要证明要证明GEGA=12GEGA=12,可以考虑折半法可以考虑折半法(如取如取GAGA的中点的中点M,GBM,GB的中点的中点N).N).w转化为证明转化为证明AM=MG=GE,BN=NG=GF.AM=MG=GE,BN=NG=GF.w分别连接分别连接FE,EN,NM,MF.FE,EN,NM,MF.w求证求证:GEGA=GFGB=GDGC=12GEGA=GFGB=GDGC=12.ABCDEFGM Nw从而借助于三角形的中位线从而借助于三角形的中位线构造平行四边形
22、来获得证明构造平行四边形来获得证明.证明二:证明二:w证明证明:取取GAGA的中点的中点M,GBM,GB的中点的中点N,N,分别连接分别连接FE,EN,NM,MF.FE,EN,NM,MF.wF,EF,E是是AC,BCAC,BC的中点的中点,w FEMN,FE=MN.FEMN,FE=MN.ABCDEFGM Nw四边形四边形FENMFENM是平行四边形是平行四边形.21ABFE FEAB,MNAB,MNAB,.21ABMN wAM=MG=GE,BN=NG=GF.AM=MG=GE,BN=NG=GF.w GEGA=GFGB=12.GEGA=GFGB=12.w同理同理,GD GC=1 2.wGEGA=G
23、FGB=GDGC=12.GEGA=GFGB=GDGC=12.w:如图如图,AE,BF,CD,AE,BF,CD是是ABCABC的三条中线的三条中线,且相交于点且相交于点G.G.w求证求证:GEGA=GFGB=GDGC=12GEGA=GFGB=GDGC=12.倍速课时学练倍速课时学练1.解一元二次方程有哪些方法?直接开平方法、配方法、公式法、因式分解法 倍速课时学练 3.列一元二次方程方程解应用题的步骤?审题 找等量关系 列方程 解方程 检验 答 倍速课时学练用一元二次方程解决实际问题的一般步骤是什么?用一元二次方程解决实际问题的一般步骤是什么?实际问题实际问题抽象抽象数学问题数学问题分析分析 量
24、、未知量、量、未知量、等量关系等量关系列出列出方程方程求出求出方程的解方程的解验证验证解的合理性解的合理性不合理不合理合理合理解释解释倍速课时学练倍速课时学练分析:分析:1因为依题意可知因为依题意可知ABC是等腰直角三角形,是等腰直角三角形,DFC也也是等腰直角三角形,是等腰直角三角形,AC可求,可求,CD就可求,因此由勾股定理便可求就可求,因此由勾股定理便可求DF的长的长2要求教师行使的距离就是求要求教师行使的距离就是求DE的长度,的长度,DF已求,已求,因此,只要在因此,只要在RtDEF中,由勾股定理即可求中,由勾股定理即可求 中考时间,小华家位于中考时间,小华家位于A处,他到考场的路径如
25、图,他需沿正南处,他到考场的路径如图,他需沿正南方向行方向行20千米里,再向正东方向行千米里,再向正东方向行20千米才到达考场,学校千米才到达考场,学校D位位于于AC的中点,小华姑妈家(的中点,小华姑妈家(F)位于)位于BC上且恰好处于上且恰好处于D的正南方的正南方向,早上向,早上7时,小华父亲带小华从时,小华父亲带小华从A出发,经出发,经B到到C匀速行使,同时匀速行使,同时在校教师发现小华有重要物品落在学校,从在校教师发现小华有重要物品落在学校,从D出发,沿南偏西方向出发,沿南偏西方向匀速直线航行,欲将该物品送给小华匀速直线航行,欲将该物品送给小华(1)学校)学校D和小华姑妈家和小华姑妈家F
26、相距多少千米相距多少千米?(2)已知小华的速度是教师的)已知小华的速度是教师的2倍,倍,小华在由小华在由B到到C的途中与教师相遇于的途中与教师相遇于E处,处,那么相遇时教师行走了多少千米那么相遇时教师行走了多少千米?(结果精确到(结果精确到0.1千米)千米)倍速课时学练 海报长海报长27dm,宽,宽21dm,正中央是一个与整,正中央是一个与整个封面长宽比例相同的矩形如果要使四周的彩个封面长宽比例相同的矩形如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度
27、精确到?衬的宽度精确到?分析:封面的长宽之比为分析:封面的长宽之比为,中央矩形的长宽之比也应,中央矩形的长宽之比也应是是,由此判断上下边衬与左右边衬的宽度之比也是,由此判断上下边衬与左右边衬的宽度之比也是.设上、下边衬的宽均为设上、下边衬的宽均为9x dm,左、右边衬的宽均为,左、右边衬的宽均为7x dm,那么中央,那么中央矩形的长为矩形的长为dm,宽为,宽为_dm要使四周的彩色边衬所占面积是封面面积的四分之一,那么中央矩形要使四周的彩色边衬所占面积是封面面积的四分之一,那么中央矩形的面积是封面面积的四分之三的面积是封面面积的四分之三27:219:79:79:72718x2114x327 18
28、21 1427 21.4xx于是可列出方程于是可列出方程喜讯 中雁学校在2009年的中考中再创佳绩,有20名学生考上乐清中学学生家长贺2009年7月倍速课时学练 这位教师知道消息后,经过两天后共有这位教师知道消息后,经过两天后共有121121人知道了人知道了这那么消息,每天传播中平均一个人告知了几个人?这那么消息,每天传播中平均一个人告知了几个人?开始有一人知道消息,第一轮的消息源就是这个人,他告知了开始有一人知道消息,第一轮的消息源就是这个人,他告知了x个人,个人,用代数式表示,第一天后共有用代数式表示,第一天后共有_人知道了这那么消息;人知道了这那么消息;列方程列方程1x+x(1+x)=1
29、21解方程,得解方程,得x1=_,x2=_.平均一个人传染了平均一个人传染了_个人个人 第二天中,这些人中的每个人又告知了第二天中,这些人中的每个人又告知了x个人,用代数式示,第二个人,用代数式示,第二天有天有_人知道这那么消息人知道这那么消息 分析:设每天平均一个人告诉了分析:设每天平均一个人告诉了x个人个人1x1xx101210倍速课时学练 在毕业聚会中,每两人都握了一次手在毕业聚会中,每两人都握了一次手,所有人共握手所有人共握手3660次次,有多少人参加聚会有多少人参加聚会?倍速课时学练 一路下来,我们结识了很多新知识,一路下来,我们结识了很多新知识,也有了很多的新想法。你能谈谈自己的收
30、也有了很多的新想法。你能谈谈自己的收获吗?说一说,让大家一起来分享。获吗?说一说,让大家一起来分享。倍速课时学练回味无穷小结 拓展列方程解应用题的一般步骤是列方程解应用题的一般步骤是:1.1.审审:审清题意审清题意:什么什么,求什么求什么?2.2.设设:设未知数设未知数,语句要完整语句要完整,有单位有单位(同一同一)的要注明单位的要注明单位;3.3.列列:列代数式列代数式,找出相等关系列方程找出相等关系列方程;4.4.解解:解所列的方程解所列的方程;5.5.验验:是否是所列方程的根是否是所列方程的根;是否符合题意是否符合题意;6.6.答答:答案也必需是完整的语句答案也必需是完整的语句,注明单位
31、且要贴近生活注明单位且要贴近生活.列方程解应用题的关键是列方程解应用题的关键是:找出相等关系找出相等关系.关于两次平均增长关于两次平均增长(降低降低)率问题的一般关系率问题的一般关系:A(1A(1x)2=B(x)2=B(其中其中A A表示基数表示基数,x,x表表示增长表表示增长(或降低或降低)率率,B,B表示新数表示新数)倍速课时学练倍速课时学练倍速课时学练小结小结 类似地类似地 这种增长率的问题在实际这种增长率的问题在实际生活普遍存在生活普遍存在,有一定的模式有一定的模式假设平均增长假设平均增长(或降低或降低)百分率为百分率为x,增长增长(或降低或降低)前的是前的是a,增长增长(或降低或降低
32、)n次后次后的量是的量是b,那么它们的数量关系可表示那么它们的数量关系可表示为为bxan)1(其中增长取其中增长取+,降低取降低取倍速课时学练 一路下来,我们结识了很多新知识,一路下来,我们结识了很多新知识,也有了很多的新想法。你能谈谈自己的收也有了很多的新想法。你能谈谈自己的收获吗?说一说,让大家一起来分享。获吗?说一说,让大家一起来分享。倍速课时学练回味无穷小结 拓展列方程解应用题的一般步骤是列方程解应用题的一般步骤是:1.1.审审:审清题意审清题意:什么什么,求什么求什么?2.2.设设:设未知数设未知数,语句要完整语句要完整,有单位有单位(同一同一)的要注明单位的要注明单位;3.3.列列
33、:列代数式列代数式,找出相等关系列方程找出相等关系列方程;4.4.解解:解所列的方程解所列的方程;5.5.验验:是否是所列方程的根是否是所列方程的根;是否符合题意是否符合题意;6.6.答答:答案也必需是完整的语句答案也必需是完整的语句,注明单位且要贴近生活注明单位且要贴近生活.列方程解应用题的关键是列方程解应用题的关键是:找出相等关系找出相等关系.关于两次平均增长关于两次平均增长(降低降低)率问题的一般关系率问题的一般关系:A(1A(1x)2=B(x)2=B(其中其中A A表示基数表示基数,x,x表表示增长表表示增长(或降低或降低)率率,B,B表示新数表示新数)倍速课时学练 思考思考:如图,在矩形如图,在矩形ABCDABCD中,中,AB=6cmAB=6cm,BC=12cmBC=12cm,点点P P从点从点A A开始沿开始沿ABAB边向点边向点B B以以1cm/s1cm/s的速度移动,的速度移动,点点Q Q从点从点B B开始沿开始沿BCBC向点向点C C以以2cm/s2cm/s,的速度移动,的速度移动,如果如果P P、Q Q分别从分别从A A、B B同时出发,那么几秒后五边同时出发,那么几秒后五边形形APQCDAPQCD的面积为的面积为64cm64cm2 2?Q P D B A C