1、 专题 02 从求根公式谈起 阅读与思考 一元二次方程是解数学问题的重要工具,在因式分解、代数式的化简与求值,应用题,各种代数方 程,几何问题、二次函数等方面有广泛的应用. 初学一元二次方程,需要注意的是: 1、熟练求解 解一般形式的一元二次方程,因式分解法是基础,它体现了“降次求解”的基本设想,公式法具有 一般性,是解一元二次方程的主要方法,对于各项系数较大的一元二次方程,可以先从分析方程的各项 系数特征入手,通过探求方程的特殊根来求解,常用的两个结论是: 若0cba,则方程 2 0(0)axbxca必有一根为1. 若0cba,则方程 2 0(0)axbxca必有一根为1. 2、善于变形 解
2、有些与一元二次方程相关的问题时,直接求解常给解题带来诸多不便,若运用整体思想,构造零 值多项式,降次变形等相关思想方法,则能使问题获得简解. 思想精髓 一元二次方程的求根公式为 2 1,2 4 2 bbac x a 这个公式形式优美,内涵丰富: 公式展示了数学的抽象性,一般性与简洁美; 公式包含了初中阶段所学过的全部六种代数运算; 公式本身回答了解一元二次方程的全部的三个问题,方程有没有实数根?有实根时共有几 个?如何求出实根? 例题与求解 例例 1 阅读下列的例题 解方程: 2 | 20 xx 解:当 x0 时,原方程化为 2 20 xx,解得 12 2,1xx (舍) 当0 x时,原方程化
3、为 2 20 xx,解得1 1 x(舍),2 2 x 请参照例题解方程: 2 |3| 30 xx ,则方程的根是 (晋江市中考试题) 解题思路:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 例例 2 2 方程 2 |1| (42 3)(2)xx的解的个数为( ) A、1 个 B、2 个 C、3 个 D、4 个 (全国初中数学联赛试题) 解题思路:通过去绝对值,将绝对值方程转化为一元二次方程求解. 例例 3 已知 m,n 是二次方程 2 199970 xx的两个根,求 22 +19986)(20008)mmnn(的 值. ( “祖冲之杯”邀请赛试题) 解题思路:若求出 m
4、,n 值或展开待求式,则计算繁难,由方程根的定义可得关于 m,n 的等式, 不妨从变形等式入手. 反思: 一元二次方程常见的变形方法有: 把 2 0(0)axbxca变形为 2 axbxc 把 2 0(0)axbxca变形为 2 axbxc 把 2 0(0)axbxca变形为 c axb x 其中体现了“降次”代换的思想;则是构造倒数关系作等值代换. 例例 4 4 解关于 x 的方程: 2 (1)(21)30mxmxm 解题思路:因未指明关于 x 的方程的类型,故首先分01m及1m0 两种情况,当1m0 时,还考虑就 2 4bac的值的三种情况加以讨论. 例例 5 5 已知三个不同的实数a,b
5、,c满足3cba,方程01 2 axx和0 2 cbxx,有 一个相同的实根,方程0 2 axx和0 2 bcxx也有一个相同的实根,求 a,b,c 的值. 解题思路:这是一个一元二次方程有公共根的问题,可从求公共根入手. 方法指导:公共根问题是一元二次方程常见问题,解这类问题的基本方法是: 若方程便于求出简单形式的根,则利用公共根相等求解. 设出公共根,设而不求,消去二次项. 例例 6 已知 a 是正整数, 如果关于 x 的方程 32 (17)(38)560 xaxa x的根都是整数, 求 a 的值及方程的整数根. (全国初中数学联赛试题) 解题思路:本题有两种解法,由方程系数特点发现 1
6、为隐含的根,从而将试题进行降次处理,或变 更主元,将原方程整理为关于 a 的较低次数的方程. 能力训练 A 级 1、已知方程06 2 qxx可以配成7 2 px的形式,那么26 2 qxx可以配成 _的形式. (杭州市中考试题) 2、若分式 2 2 2 21 xx xx 的值为 0,则x的值等于. (天津市中考试题) 3、设方程 2 199319940,xx和 2 (1994 )1993 199510 xx 的较小的根分别为,则 . 4、方程 2 |45| 62xxx的解应是(上海市竞赛试题) 5、方程 23 (1)1 x xx 的整数解的个数是. A、2 个 B、3 个 C、4 个 D、5
7、个 (山东省选拔赛试题) 6、 若关于 x 的一元二次方程 22 (1)5320mxxmm的常数项为 0, 则 m 的值等于 ( ) A、1 B、2 C、1 或 2 D、0 (德州市中考试题) 7、已知 a, b 都是负实数,且 111 0 abab ,那么 b a 的值是( ) A、1 5 2 B、1 5 2 C、 15 2 D、 15 2 (江苏省竞赛试题) 8、方程 2 | 10 xx 的解是( ) A、1 5 2 B、 15 2 C、1 5 2 或 15 2 D、 15 2 9、已知 a 是方程 2 199910 xx 的一个根,求 2 2 1999 1998 1 aa a 的值. 1
8、0、已知 2 410aa 且 42 32 1 3 22 ama amaa ,求 m 的值. (荆州市竞赛试题) 11、是否存在某个实数 m,使得方程 2 20 xmx和 2 20 xxm有且只有一个公共根?如果 存在,求出这个实数 m 及两方程的公共实根;如果不存在,请说明理由. 12、已知关于 x 的方程 2 (4)(8)(80 12 )320kk xk x的解都是整数,求整数 k 的值. B 级 1、已知、是方程 2 (2)10 xmx 的两根,则 22 (1)(1 m)m的值为 2、若关于 x 的方程 2 0 xpxq与 2 0 xqxp只有一个公共根,则 1999 (p q) 3、设
9、a, b 是整数,方程 2 0 xaxb有一个根为74 3,则ba=_ (全国通讯赛试题) 4、用 x表示不大于 x 的最大整数,则方程 2 2 30 xx 解的个数为( ) A、1 个 B、2 个 C、3 个 D、4 个 5、已知 1 | 1a a ,那么代数式 1 |a a ( ) A、 5 2 B、 5 2 C、5 D、5 6、方程| 3| 20 x xx 的实根的个数为( ) A、1 个 B、2 个 C、3 个 D、4 个 7、已知 2 519910 xx,则代数式 42 (2)(1)1 (1)(2) xx xx 的值为( ) A、1996 B、1997 C、1998 D、1999 8
10、、已知三个关于 x 的一元二次方程 222 0,0,0axbxcbxcxacxaxb恰有一个公 共实根,则 222 abc bccaab 的值为( ) A、0 B、1 C、2 D、3 (全国初中数学联赛试题) 9、已知198 3x ,求 432 2 621823 815 xxxx xx 的值. ( “祖冲之杯”邀请赛试题) 10、设方程 2 |21| 40 xx ,求满足该方程的所有根之和. (重庆市竞赛试题) 11、首项系数不相等的两个二次方程 222 (1)(2)(2 )0axaxaa 及 222 (1)(2)(2 )0bxbxbb (其中 a, b 为正整数) 有一个公共根,求 ba ba ab ab 的值. (全国初中数学联赛试题) 12、 小明用下面的方法求出方程230 x 的解, 请你仿照他的方法求出下面另外两个方程的解, 并把你的解答过程填写在下面的表格中 方程 换元法得新方程 解新方程 检验 求原方程的解 230 x 令xt , 则230t 3 2 t 3 0 2 t 3 2 x , 9 4 x 230 xx 240 xx