1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则下列结论正确的是( )ABCD2函数f(x)sin(wx)(w0,)的最小正周期是,若将该函数的图象向右平移个单位后得到的函数图象关于直线x对称,则函数f(x)的解析式为( )Af(x)sin(2x)Bf(x)sin(2x)Cf(x)sin(2
2、x)Df(x)sin(2x)3聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,则按照以上规律,若具有“穿墙术”,则( )A48B63C99D1204已知数列满足:)若正整数使得成立,则( )A16B17C18D195集合中含有的元素个数为( )A4B6C8D126复数(i是虚数单位)在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限7为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养
3、指标雷达图,则下面叙述不正确的是( )A甲的数据分析素养优于乙B乙的数据分析素养优于数学建模素养C甲的六大素养整体水平优于乙D甲的六大素养中数学运算最强8我国古代数学家秦九韶在数书九章中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为( )ABCD9某几何体的三视图如右图所示,则该几何体的外接球表面积为( )ABCD10命题:的否定为ABCD11已知实数,则下列说法正确的是( )ABCD12设为自然对数的底数,函数,若,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,从一个边长为的正三角形纸片的三个角上,沿图中
4、虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为_.14一个四面体的顶点在空间直角坐标系中的坐标分别是,则该四面体的外接球的体积为_15已知集合,则_16如图是一个算法伪代码,则输出的的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值
5、时直线的直角坐标方程.18(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99用最小二乘法求与的回归直线方程;叫做篮球馆月惠值,根据的结论,试估计这四个篮球馆月惠值最大时的值参考数据
6、和公式:,19(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示()求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);()填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”女生男生总计获奖不获奖总计附表及公式:其中,20(12分)在中,(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围21(12分)已知,函数.()若在区间上单调递增,求的值;()若恒成立,求的最
7、大值.(参考数据:)22(10分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查
8、了计算能力,属于基础题.2、D【解析】由函数的周期求得,再由平移后的函数图像关于直线对称,得到 ,由此求得满足条件的的值,即可求得答案.【详解】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力
9、.3、C【解析】观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.4、B【解析】计算,故,解得答案.【详解】当时,即,且.故,故.故选:.【点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.5、B【解析】解:因为集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B6、B【解析】利用复数的四则运算以及几何意义即可求解.【详解】解:,则复数(i是虚数单位)在复平面内对应的点的坐标为:,位于第二象限.故选
10、:B.【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.7、D【解析】根据所给的雷达图逐个选项分析即可.【详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.8、A【解析】根据,利用正弦定理边化为
11、角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.9、A【解析】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,且平面,的中点为外接球的球心,半径,外接球表面积故选:A【点睛】本题考查了由三视图求几何体的外接球的表面
12、积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键10、C【解析】命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C11、C【解析】利用不等式性质可判断,利用对数函数和指数函数的单调性判断.【详解】解:对于实数, ,不成立对于不成立对于利用对数函数单调递增性质,即可得出对于指数函数单调递减性质,因此不成立 故选:【点睛】利用不等式性质比较大小要注意不等式性质成立的前提条件解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法12、D【解析】利用与的关系,求得的值.【详解】依题意,所以故选:D【
13、点睛】本小题主要考查函数值的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由题意得正三棱柱底面边长6,高为,由此能求出所得正三棱柱的体积【详解】如图,作,交于,由题意得正三棱柱底面边长,高为,所得正三棱柱的体积为:故答案为:1【点睛】本题考查立体几何中的翻折问题、正三棱柱体积的求法、三棱柱的结构特征等基础知识,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量14、【解析】将四面体补充为长宽高分别为的长方体,体对角线即为外接球的直径,从而得解.【详解】采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为,长方体的外接
14、球即为该四面体的外接球,外接球的直径即为长方体的体对角线,所以球半径为,体积为.【点睛】本题主要考查了四面体外接球的常用求法:补体法,通过补体得到长方体的外接球从而得解,属于基础题.15、【解析】解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【详解】,.故答案为:.【点睛】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.16、5【解析】执行循环结构流程图,即得结果.【详解】执行循环结构流程图得,结束循环,输出.【点睛】本题考查循环结构流程图,考查基本分析与运算能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)曲线,
15、曲线.(2).【解析】(1)用和消去参数即得的极坐标方程;将两边同时乘以,然后由解得直角坐标方程.(2)过极点的直线的参数方程为,代入到和:中,表示出即可求解.【详解】解:由和,得,化简得故:将两边同时乘以,得因为,所以得的直角坐标方程.(2)设直线的极坐标方程由,得,由,得故当时,取得最大值此时直线的极坐标方程为:,其直角坐标方程为:.【点睛】考查直角坐标方程、极坐标方程、参数方程的互相转化以及应用圆的极坐标方程中的几何意义求距离的的最大值方法;中档题.18、(1)见解析,12.5(2)20【解析】(1) 运用分层抽样,结合总场次为100,可求得的值,再运用古典概型的概率计算公式可求解果;(
16、2) 由公式可计算的值,进而可求与的回归直线方程;求出,再对函数求导,结合单调性,可估计这四个篮球馆月惠值最大时的值.【详解】解:(1)抽样比为,所以分别是,6,7,8,5所以两数之和所有可能取值是:10,12,13,15,所以分布列为期望为(2)因为所以,;,设,所以当递增,当递减所以约惠值最大值时的值为20【点睛】本题考查直方图的实际应用,涉及求概率,平均数、拟合直线和导数等问题,关键是要读懂题意,属于中档题.19、(),;()详见解析.【解析】()根据概率的性质知所有矩形的面积之和等于列式可解得; ()由频率分布直方图知样本中获奖的人数为,不获奖的人数为,从而可得列联表,再计算出,与临界
17、值比较可得【详解】解:(),()由频率分布直方图知样本中获奖的人数为,不获奖的人数为,列联表如下:女生男生总计获奖不获奖总计因为,所以在犯错误的概率不超过的前提下能认为“获奖与女生,男生有关”【点睛】本题主要考查独立性检验,以及由频率分布直方图求平均数的问题,熟记独立性检验的思想,以及平均数的计算方法即可,属于常考题型.20、(1)(2)【解析】(1)先利用同角的三角函数关系求得,再由求解即可;(2)在中,由正弦定理可得,则,再由求解即可.【详解】解:(1)在中,所以,所以 (2)由(1)可知,所以,在中,因为,所以,因为,所以 , 所以.【点睛】本题考查已知三角函数值求值,考查正弦定理的应用
18、.21、();()3.【解析】()先求导,得,已知导函数单调递增,又在区间上单调递增,故,令,求得,讨论得,而,故,进而得解;()可通过必要性探路,当时,由知,又由于,则,当,结合零点存在定理可判断必存在使得,得,化简得,再由二次函数性质即可求证;【详解】()的定义域为.易知单调递增,由题意有.令,则.令得.所以当时,单调递增;当时,单调递减.所以,而又有,因此,所以.()由知,又由于,则.下面证明符合条件.若.所以.易知单调递增,而,因此必存在使得,即.且当时,单调递减;当时,单调递增;则.综上,的最大值为3.【点睛】本题考查导数的计算,利用导数研究函数的增减性和最值,属于中档题22、(1)
19、(2)是为定值,的横坐标为定值【解析】(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离心率以及,求得,由此求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆方程,化简后写出根与系数关系.求得直线的方程,并求得两直线交点的横坐标,结合根与系数关系进行化简,求得的横坐标为定值.【详解】(1)依题意可知,解得,即;而,即,结合解得,因此椭圆方程为(2)由题意得,左焦点,设直线的方程为:,由消去并整理得,直线的方程为:,直线的方程为:联系方程,解得,又因为所以所以的横坐标为定值【点睛】本小题主要考查根据椭圆离心率求椭圆方程,考查直线和椭圆的位置关系,考查直线和直线交点坐标的求法,考查运算求解能力,属于中档题.