2024-2025学年广东省广州市南沙区5月初三数学试题期末热身联考试卷含解析.doc

上传人(卖家):知识图书馆 文档编号:8117195 上传时间:2024-12-03 格式:DOC 页数:19 大小:735.54KB
下载 相关 举报
2024-2025学年广东省广州市南沙区5月初三数学试题期末热身联考试卷含解析.doc_第1页
第1页 / 共19页
2024-2025学年广东省广州市南沙区5月初三数学试题期末热身联考试卷含解析.doc_第2页
第2页 / 共19页
2024-2025学年广东省广州市南沙区5月初三数学试题期末热身联考试卷含解析.doc_第3页
第3页 / 共19页
2024-2025学年广东省广州市南沙区5月初三数学试题期末热身联考试卷含解析.doc_第4页
第4页 / 共19页
2024-2025学年广东省广州市南沙区5月初三数学试题期末热身联考试卷含解析.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、2024-2025学年广东省广州市南沙区5月初三数学试题期末热身联考试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,半

2、径为3的A经过原点O和点C(0,2),B是y轴左侧A优弧上一点,则tanOBC为( )AB2CD2如图是由7个同样大小的正方体摆成的几何体将正方体移走后,所得几何体()A主视图不变,左视图不变B左视图改变,俯视图改变C主视图改变,俯视图改变D俯视图不变,左视图改变3如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )ABCD4计算:得()A-B-C-D5某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍设照片四

3、周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A(7+x)(5+x)3=75B(7+x)(5+x)=375C(7+2x)(5+2x)3=75D(7+2x)(5+2x)=3756下列图形中,是轴对称图形的是( )ABCD7如图,AB与O相切于点B,OA=2,OAB=30,弦BCOA,则劣弧的长是()ABCD8如图,在平面直角坐标系中,把ABC绕原点O旋转180得到CDA,点A,B,C的坐标分别为(5,2),(2,2),(5,2),则点D的坐标为()A(2,2)B(2,2)C(2,5)D(2,5)9随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD10已知一元二次方程a

4、x2+ax40有一个根是2,则a值是()A2BC2D4二、填空题(本大题共6个小题,每小题3分,共18分)11不等式组的解集是_12如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,则第2018个正方形的面积为_13让我们轻松一下,做一个数字游戏: 第一步:取一个自然数,计算得; 第二步:算出的各位数字之和得,计算得; 第三步:算出的各位数字之和得,再计算得; 依此类推,则_14如图,在平面直角坐标系中,点P的坐标为(0,4),直线yx3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为_15在R

5、tABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_16如图,将ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上(1)计算ABC的周长等于_(2)点P、点Q(不与ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC当AQPC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明)_三、解答题(共8题,共72分)17(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数

6、字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由18(8分)在平面直角坐标系中,抛物线y(xh)2+k的对称轴是直线x1若抛物线与x轴交于原点,求k的值;当1x0时,抛物线与x轴有且只有一个公共点,求k的取值范围19(8分)已知关于x的一元二次方程x2(m+3)x+m+2=1(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m的值20(8分)学了统计知识后,小红就本班同学上学“喜欢的

7、出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)21(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=

8、MC,求此时点M的坐标22(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本求出y与x的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?23(12分)已知,平面直角坐标系中的点A(a,1),ta

9、ba2b2(a,b是实数)(1)若关于x的反比例函数y过点A,求t的取值范围(2)若关于x的一次函数ybx过点A,求t的取值范围(3)若关于x的二次函数yx2+bx+b2过点A,求t的取值范围24(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,ABBC,同一时刻,光线与水平面的夹角为72,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米)(参考数据:sin720.95,cos720

10、.31,tan723.08)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:连结CD,可得CD为直径,在RtOCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tanCDO=,由圆周角定理得,OBC=CDO,则tanOBC=,故答案选C考点:圆周角定理;锐角三角函数的定义2、A【解析】分别得到将正方体移走前后的三视图,依此即可作出判断【详解】将正方体移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。将正方体移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体移走后的

11、左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。将正方体移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。故选A.考查了三视图,从几何体的正面,左面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.3、B【解析】根据俯视图可确定主视图的列数和每列小正方体的个数【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成故答案选B.由几何体的俯视图可确定该几何体的主视图和左视图4、B【解析】同级运算从左向右依次计算,计算过程中注意正负符号的变化

12、【详解】 -故选B.本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.5、D【解析】试题分析:由题意得;如图知;矩形的长=7+2x 宽=5+2x 矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=375考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题6、B【解析】分析:根据轴对称图形的概念求解详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不

13、合题意;故选B点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形7、B【解析】解:连接OB,OCAB为圆O的切线,ABO=90在RtABO中,OA=2,OAB=30,OB=1,AOB=60BCOA,OBC=AOB=60又OB=OC,BOC为等边三角形,BOC=60,则劣弧BC的弧长为=故选B点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键8、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(2,2),即可得出D的坐标为(2,2)详解:

14、点A,C的坐标分别为(5,2),(5,2),点O是AC的中点,AB=CD,AD=BC,四边形ABCD是平行四边形,BD经过点O,B的坐标为(2,2),D的坐标为(2,2),故选A点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标9、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.10、C【解析】分析:将x=2

15、代入方程即可求出a的值详解:将x=2代入可得:4a2a4=0, 解得:a=2,故选C点睛:本题主要考查的是解一元一次方程,属于基础题型解方程的一般方法的掌握是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、2x1【解析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集【详解】由得x2,由得x1,不等式组的解集为2x1故答案为:2x1此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)12、1【解析】先分别求出第1个、第2个、第3个正方形的面积,由此总结规律

16、,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积【详解】:第1个正方形的面积为:1+421=5=51;第2个正方形的面积为:5+42=25=52;第3个正方形的面积为:25+42=125=53;第n个正方形的面积为:5n;第2018个正方形的面积为:1故答案为1本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积13、1【解析】根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值【详解】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2

17、+2)2+1=26,20193=673,a2019= a3=1,故答案为:1本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值14、【解析】认真审题,根据垂线段最短得出PMAB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用PBMABO,即可求出本题的答案【详解】解:如图,过点P作PMAB,则:PMB=90,当PMAB时,PM最短,因为直线y=x3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,3),在RtAOB中,AO=4,BO=3,AB=,BMP=AOB=90,B=B,PB=OP+OB=7,PBMABO

18、,即:,所以可得:PM=15、1【解析】解:如图在RtABC中(C=90),放置边长分别2,3,x的三个正方形,CEFOMEPFN,OE:PN=OM:PFEF=x,MO=2,PN=3,OE=x2,PF=x3,(x2):3=2:(x3),x=0(不符合题意,舍去),x=1故答案为1点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键16、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P 【解析】(1)利用勾股定理求出AB,从而得到ABC的周长;(2) 取格点D,E,F,G,H

19、,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.【详解】解:(1)AC=3,BC=4,C=90,根据勾股定理得AB=5,ABC的周长=5+4+3=12.(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.三、解答题(共8题,共72分

20、)17、(1);(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:P(小王)=,P(小李)=,规则不公平点睛:本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比18、(1)k1;(2)当4k1时,抛物线与x轴有且只有一个公共点【解析】(1)由抛物线

21、的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当1x2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)抛物线y(xh)2+k的对称轴是直线x1,h1,把原点坐标代入y(x1)2+k,得,(21)2+k2,解得k1;(2)抛物线y(x1)2+k与x轴有公共点,对于方程(x1)2+k2,判别式b24ac4k2,k2当x1时,y4+k;当x2时,y1+k,抛物线的对称轴为x1,且当1x2时,抛物线与x轴有且只有一个公共点,4+k2且1+k2,解得4k1,综上,当4k1时,抛物线与

22、x轴有且只有一个公共点抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.19、(1)证明见解析;(2)m 的值为1或2【解析】(1)计算根的判别式的值可得(m+1)21,由此即可证得结论;(2)根据题意得到 x=2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可【详解】(1)证明:=(m+3)22(m+2)=(m+1)21,无论实数 m 取何值,方程总有两个实数根;(2)解:方程有一个根的平方等于 2,x=2 是原方程的根,当 x=2 时,22(m+3)+m+2=1解得m=1;当 x=2 时,2+2(m+3)+m+2=1,解得m=2综上所述,m 的值

23、为 1 或2本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点20、(1)补全条形统计图见解析;“骑车”部分所对应的圆心角的度数为108;(2)2人都是“喜欢乘车”的学生的概率为【解析】(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得【详解】(1)被调查的总人数为2550%50人;则步行的人数为50251

24、510人;如图所示条形图,“骑车”部分所对应的圆心角的度数360108;(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,则有AB、AC、AD、BC、BD、CD这6种等可能的情况,其中2人都是“喜欢乘车”的学生有3种结果,所以2人都是“喜欢乘车”的学生的概率为本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1) ,y=2x1;(2).【解析】(1)利用待定系数法即可解答;(2)作MDy轴,交y轴于点D,设点M的坐标为(x,

25、2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标【详解】解:(1)把点A(4,3)代入函数得:a=34=12,A(4,3)OA=1,OA=OB,OB=1,点B的坐标为(0,1)把B(0,1),A(4,3)代入y=kx+b得:y=2x1(2)作MDy轴于点D.点M在一次函数y=2x1上,设点M的坐标为(x,2x1)则点D(0,2x-1)MB=MC,CD=BD8-(2x-1)=2x-1+1解得:x=2x1= ,点M的坐标为 .本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式22、(1)y=2x+80(20x28);(2)每本纪念册的销售单

26、价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元【解析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润销售量:w(x20)(2x80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y与x的函数关系式为ykxb.把(22,36)与(24,32)代入,得 解得 y2x80(20x28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x20)y150,即(x20)(2x80)150.解得x125,x235(舍去)答:每本纪念册的销售单价是

27、25元(3)由题意,可得w(x20)(2x80)2(x30)2200.售价不低于20元且不高于28元,当x30时,y随x的增大而增大,当x28时,w最大2(2830)2200192(元)答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元23、(1)t;(2)t3;(3)t1【解析】(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围(2)把点A的坐标代入一次函数解析式求得a=;然后利用二次函数的最值的求法得到t的取值范围(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值

28、范围【详解】解:(1)把A(a,1)代入y得到:1,解得a1,则taba2b2b1b2(b)2因为抛物线t(b)2的开口方向向下,且顶点坐标是(,),所以t的取值范围为:t;(2)把A(a,1)代入ybx得到:1ab,所以a,则taba2b2(a2+b2)+1(b+)2+33,故t的取值范围为:t3;(3)把A(a,1)代入yx2+bx+b2得到:1a2+ab+b2,所以ab1(a2+b2),则taba2b212(a2+b2)1,故t的取值范围为:t1本题考查了反比例函数、一次函数以及二次函数的性质代入求值时,注意配方法的应用24、13.1【解析】试题分析:如图,作CMAB交AD于M,MNAB于N,根据=,可求得CM的长,在RTAMN中利用三角函数求得AN的长,再由MNBC,ABCM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长试题解析:如图作CMAB交AD于M,MNAB于N由题意=,即=,CM=,在RTAMN中,ANM=90,MN=BC=4,AMN=72,tan72=,AN12.3,MNBC,ABCM,四边形MNBC是平行四边形,BN=CM=,AB=AN+BN=13.1米考点:解直角三角形的应用.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 考试试卷
版权提示 | 免责声明

1,本文(2024-2025学年广东省广州市南沙区5月初三数学试题期末热身联考试卷含解析.doc)为本站会员(知识图书馆)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|