2024-2025学年广东省深圳市深圳实验校初三5月仿真卷数学试题含解析.doc

上传人(卖家):知识图书馆 文档编号:8127721 上传时间:2024-12-05 格式:DOC 页数:21 大小:786.54KB
下载 相关 举报
2024-2025学年广东省深圳市深圳实验校初三5月仿真卷数学试题含解析.doc_第1页
第1页 / 共21页
2024-2025学年广东省深圳市深圳实验校初三5月仿真卷数学试题含解析.doc_第2页
第2页 / 共21页
2024-2025学年广东省深圳市深圳实验校初三5月仿真卷数学试题含解析.doc_第3页
第3页 / 共21页
2024-2025学年广东省深圳市深圳实验校初三5月仿真卷数学试题含解析.doc_第4页
第4页 / 共21页
2024-2025学年广东省深圳市深圳实验校初三5月仿真卷数学试题含解析.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、2024-2025学年广东省深圳市深圳实验校初三5月仿真卷数学试题注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1九章算术是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就它的算法体系至今仍在推动着计算机的发展和应用书中记载:“今有圆材埋在壁中,不知大

2、小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A13寸B20寸C26寸D28寸2下列说法正确的是()A掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B明天下雪的概率为,表示明天有半天都在下雪C甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D了解一批充电宝的使用寿命,适合用普查的方式3下列计算正确的是Aa2a

3、22a4 B(a2)3a6 C3a26a23a2 D(a2)2a244已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )ABCD5如图,在四边形ABCD中,A+D=,ABC的平分线与BCD的平分线交于点P,则P=() A90-B90+ CD360-6如图,已知ABC,按以下步骤作图:分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;作直线 MN 交 AB 于点 D,连接 CD若 CD=AC,A=50,则ACB 的度数为( )A90B95C105D1107如图,A、B、C三点在正方形网格线的

4、交点处,若将ABC绕着点A逆时针旋转得到ACB,则tanB的值为( )ABCD8如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示cos的值,错误的是( )ABCD9下列各运算中,计算正确的是()Aa12a3=a4B(3a2)3=9a6C(ab)2=a2ab+b2D2a3a=6a210如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO2,OB1,BC2,则下列结论正确的是( )ABCD11第四届济南国际旅游节期间,全市共接待游客686000人次将686000用科学记数法表示为()A686104 B68.6105 C6.86106 D6.8610512如

5、图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有、的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13对于任意实数a、b,定义一种运算:ab=aba+b1例如,15=151+51=ll请根据上述的定义解决问题:若不等式3x1,则不等式的正整数解是_14一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_15当x _ 时,分式 有意义16如图,AB为O的直径,弦CDAB于点E,已知CD6,EB1,则O的半径为_17如图,

6、线段 AB 是O 的直径,弦 CDAB,AB=8,CAB=22.5,则 CD的长等于_18已知二次函数与一次函数的图象相交于点,如图所示,则能使成立的x的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,ABC中,ABAC1,BAC45,AEF是由ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D求证:BECF ;当四边形ACDE为菱形时,求BD的长20(6分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程在科研所到宿舍楼之间修一条高科技的道路;对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到

7、宿舍楼的距离xkm之间的关系式为yax+b(0x3)当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w防辐射费+修路费(1)当科研所到宿舍楼的距离x3km时,防辐射费y_万元,a_,b_;(2)若m90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?21(6分)(1)解方程:x24x3=0;(2)解不等式组:22(8分)如图,在平行四边形ABCD中

8、,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:AGEBGF;(2)试判断四边形AFBE的形状,并说明理由23(8分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由 24(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AECF求证:四边形BFDE是

9、平行四边形25(10分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D求a,b的值及反比例函数的解析式;若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由26(12分)直线y1kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D(1)求直线AB的解析式;(2)根据图象写出不等式kx+b0的解集;(3)若点P是x轴上一动点,当COD与ADP相似时,求点P的坐标2

10、7(12分)先化简,再求值:(1+),其中x=+1参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分析:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,O的直径为26寸,故选C点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题2、C【解析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可【详解】A.

11、掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B. “明天下雪的概率为”,表示明天有可能下雪,错误;C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;故选:C考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.3、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2a2a4 ,故A选项错误;B. (a2)3a6 ,正确;C. 3a26a2-3a2 ,故C选项

12、错误;D. (a2)2a24a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.4、A【解析】此题考查了概率公式的应用注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.5、C【解析】试题分析:四边形ABCD中,ABC+BCD=360(A+D)=360,PB和PC分别为ABC、BCD的平分线,PBC+PCB=(ABC+BCD)=(360)=180,则P=180(PBC+PCB)=180(180)=故选C考点:1.多边形内角与外角2.三

13、角形内角和定理6、C【解析】根据等腰三角形的性质得到CDA=A=50,根据三角形内角和定理可得DCA=80,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到B=BCD,根据三角形外角性质可知B+BCD=CDA,进而求得BCD=25,根据图形可知ACB=ACD+BCD,即可解决问题.【详解】CD=AC,A=50CDA=A=50CDA+A+DCA=180DCA=80根据作图步骤可知,MN垂直平分线段BCBD=CDB=BCDB+BCD=CDA2BCD=50BCD=25ACB=ACD+BCD=80+25=105故选C本题考查了等腰三角形的性质、三角

14、形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.7、D【解析】过C点作CDAB,垂足为D,根据旋转性质可知,B=B,把求tanB的问题,转化为在RtBCD中求tanB【详解】过C点作CDAB,垂足为D根据旋转性质可知,B=B在RtBCD中,tanB=,tanB=tanB=故选D本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法8、D【解析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案【详解】cos=.故选D.熟悉掌握锐角三角函数的定义是关键.9、D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算

15、即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a22ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键10、C【解析】根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.【详解】解:AO2,OB1,BC2,a2,b1,c3,|a|c|,ab0,故选:C此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.11、D【解析】根据科学记数法的表示形式

16、(a10n,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数)可得:686000=6.86105,故选:D12、A【解析】根据题意得到原几何体的主视图,结合主视图选择【详解】解:原几何体的主视图是:视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可故取走的正方体是故选A本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】【分析】根据新定义可得出关于x的一元一次

17、不等式,解之取其中的正整数即可得出结论【详解】3x=3x3+x22,x,x为正整数,x=2,故答案为:2【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x是解题的关键14、 【解析】用黑球的个数除以总球的个数即可得出黑球的概率【详解】解:袋子中共有5个球,有2个黑球,从袋子中随机摸出一个球,它是黑球的概率为;故答案为本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=15、x3【解析】由题意得x-30,x3.16、1【解析】解:连接OC,AB为O的直径,ABCD,CE=DE=CD=6=3,设O的半径为xc

18、m,则OC=xcm,OE=OBBE=x1,在RtOCE中,OC2=OE2+CE2,x2=32+(x1)2,解得:x=1,O的半径为1,故答案为1本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键17、4 【解析】连接 OC,如图所示,由直径 AB 垂直于 CD,利用垂径定理得到 E 为CD 的中点,即 CE=DE,由 OA=OC,利用等边对等角得到一对角相等,确定出三角形 COE 为等腰直角三角形,求出 CE 的长,进而得出 CD【详解】连接 OC,如图所示:AB 是O 的直径,弦 CDAB,OC= AB=4,OA=OC,A=OCA=22.5,COE 为AOC 的外角,COE=4

19、5,COE 为等腰直角三角形,CE= OC=,CD=2CE=,故答案为.考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键18、x<-2或x>1【解析】试题分析:根据函数图象可得:当时,x2或x1考点:函数图象的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析(2)-1 【解析】(1)先由旋转的性质得AE=AB,AF=AC,EAF=BAC,则EAF+BAF=BAC+BAF,即EAB=FAC,利用AB=AC可得AE=AF,得出ACFABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=

20、AC=AB=1,ACDE,根据等腰三角形的性质得AEB=ABE,根据平行线得性质得ABE=BAC=45,所以AEB=ABE=45,于是可判断ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BEDE求解【详解】(1)AEF是由ABC绕点A按顺时针方向旋转得到的,AE=AB,AF=AC,EAF=BAC,EAF+BAF=BAC+BAF,即EAB=FAC,在ACF和ABE中,ACFABEBE=CF.(2)四边形ACDE为菱形,AB=AC=1,DE=AE=AC=AB=1,ACDE,AEB=ABE,ABE=BAC=45,AEB=ABE=45,ABE为等腰直角三角形,BE=AC=,BD=BEDE=考

21、点:1旋转的性质;2勾股定理;3菱形的性质20、 (1)0,360,101;(2)当距离为2公里时,配套工程费用最少;(3)0m1【解析】(1)当x1时,y720,当x3时,y0,将x、y代入yax+b,即可求解;(2)根据题目:配套工程费w防辐射费+修路费分0x3和x3时讨论.当0x3时,配套工程费W90x2360x+101,当x3时,W90x2,分别求最小值即可;(3)0x3,Wmx2360x+101,(m0),其对称轴x,然后讨论:x=3时和x3时两种情况m取值即可求解【详解】解:(1)当x1时,y720,当x3时,y0,将x、y代入yax+b,解得:a360,b101,故答案为0,36

22、0,101;(2)当0x3时,配套工程费W90x2360x+101,当x2时,Wmin720;当x3时,W90x2,W随x最大而最大,当x3时,Wmin810720,当距离为2公里时,配套工程费用最少;(3)0x3,Wmx2360x+101,(m0),其对称轴x,当x3时,即:m60,Wminm()2360()+101,Wmin675,解得:60m1;当x3时,即m60,当x3时,Wmin9m675,解得:0m60,故:0m1本题考查了二次函数的性质在实际生活中的应用最值问题常利函数的增减性来解答21、(1),;(2)1x1【解析】试题分析:利用配方法进行解方程;首先分别求出两个不等式的解,然

23、后得出不等式组的解试题解析:(1)1x=31x+1=7=7 x2=解得:,(2)解不等式1,得x1 解不等式2,得x1 不等式组的解集是1x1考点:一元二次方程的解法;不等式组22、 (1)证明见解析(2)四边形AFBE是菱形【解析】试题分析:(1)由平行四边形的性质得出ADBC,得出AEG=BFG,由AAS证明AGEBGF即可;(2)由全等三角形的性质得出AE=BF,由ADBC,证出四边形AFBE是平行四边形,再根据EFAB,即可得出结论试题解析:(1)证明:四边形ABCD是平行四边形,ADBC,AEG=BFG,EF垂直平分AB,AG=BG,在AGEH和BGF中,AEG=BFG,AGE=BG

24、F,AG=BG,AGEBGF(AAS);(2)解:四边形AFBE是菱形,理由如下:AGEBGF,AE=BF,ADBC,四边形AFBE是平行四边形,又EFAB,四边形AFBE是菱形考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型23、(1);(2);(3)P1(3,-3),P2(,3),P3(,3)【解析】(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;(2)根据的坐标,易求得直线的解析式由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;(3)本题应分情况讨论:过作轴的平行

25、线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标【详解】解:(1)把代入,可以求得 (2)过点作轴分别交线段和轴于点,在中,令,得 设直线的解析式为 可求得直线的解析式为: S四边形ABCD 设 当时,有最大值 此时四边形ABCD面积有最大值 (3)如图所示,如图:过点C作CP1x轴交抛物线于点P1,过点P1作P1E1BC交x轴于点E1,此时四边形BP1CE1为平行四边形,C(0,-3)设P1(x,-3)x2-x

26、-3=-3,解得x1=0,x2=3,P1(3,-3);平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,C(0,-3)设P(x,3),x2-x-3=3,x2-3x-8=0解得x=或x=,此时存在点P2(,3)和P3(,3),综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3)此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大24、证明见解析【解析】四边形ABCD是平行四边形,AD/BC,AD=BC,AE=CFAD-AE=BC-CF即DE=BF四边形BFDE是

27、平行四边形.25、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP3|n1|,SBDP1|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,

28、k133,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC|xPxA|3|n1|,SBDPBD|xBxP|1|3n|,SACPSBDP,3|n1|1|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足

29、条件的M(1,0)或(3,0)此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键26、 (1) yx+6;(2) 0x2或x4;(3) 点P的坐标为(2,0)或(3,0).【解析】(1)将点坐标代入双曲线中即可求出,最后将点坐标代入直线解析式中即可得出结论;(2)根据点坐标和图象即可得出结论;(3)先求出点坐标,进而求出,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论【详解】解:(1)点和点在反比例函数的图象上,解得,即把两点代入中得 ,解得:,所以直线的解析式为:;(2)由图象可得,当时,的解集为或(3)由(1)得直线的解析式为,当时,y6,当时,点坐标为 .设P点坐标为,由题可以,点在点左侧,则由可得当时,解得,故点P坐标为当时,解得,即点P的坐标为因此,点P的坐标为或时,与相似此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键27、,1+ 【解析】运用公式化简,再代入求值.【详解】原式= ,当x=+1时,原式=考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 考试试卷
版权提示 | 免责声明

1,本文(2024-2025学年广东省深圳市深圳实验校初三5月仿真卷数学试题含解析.doc)为本站会员(知识图书馆)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|