圆锥曲线中的轨迹问题轨迹是动点按照一定的规律即轨迹条件运动而形成的,这个轨迹条件一旦用动点坐标的数学表达式表示出来,轨迹方程就产生了根据动点的运动规律求出动点的轨迹方程,这是高考的常考点:一方面,求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一
高考数学尖子生辅导专题Tag内容描述:
1、 圆锥曲线中的探究性问题近年来,在圆锥曲线考查的题型中经常会出现探究性问题探究性问题是一种开放性问题,是指命题中缺少一定条件或无明确结论,需要经过猜测、归纳并加以证明的题型圆锥曲线的考题主要是结论探究的开放性问题,有探究位置关系的,有探究点是否存在直线是否存在圆是否存在的,有探究圆是否过定点直线是否过定点的,等等,有结论存在和结论不存在两种情形这类题型在考查圆锥曲线基础知识和几何性质的同时,能很好地考查学生的运算求解、推理论证等数学能力,对学生的综合能力要求较高模块1 整理方法 提升能力圆锥曲线中的。
2、 利用导数证明函数不等式(二)本专题总结了利用导数证明含有两个未知数的函数不等式的常见方法,希望同学们看后有所收获,提升利用导数证明函数不等式的能力模块1 整理方法 提升能力对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数方法2:利用未知数之间的关系消元,化归为一个未知数方法3:分离未知数后构造函数,利用函数的单调性证明方法4:利用主元法,构造函数证明对数平均值不等式链我们将两个正数和的对数平均值定义为:,对数平均值不。
3、 圆锥曲线中的“定”问题近些年,关于圆锥曲线的命题,不管是高考真题还是高考模拟题,都不约而同地大量涌现出一类“定”问题,即定值、定点以及定直线问题,考生遇见这样的问题都因不得要领,从而内心感到惧怕,但因为这类题在解答之前并不知道其定值、定点之结果,更增添了它的难度,有着很好的区分度,于是这一类题就成为了命题者们青睐的考题,相信在今年或往后的高考中会成为一种趋势模块1 整理方法 提升能力圆锥曲线中的“定”问题常有以下类题型:题型1:定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角。
4、 利用导数证明函数不等式(一)函数不等式的证明由于其形式多变,方法灵活,成为了近几年高考的一个热点与难点,它一般出现在压轴题的位置,解决起来比较困难利用导数作为工具进行证明是证明函数不等式的一种常见方法,本专题总结了利用导数证明一个未知数的函数不等式的常见方法,希望同学们看后有所收获,提升利用导数证明函数不等式的能力模块1 整理方法 提升能力对于一个未知数的函数不等式问题,其关键在于将所给的不等式进行“改造”,得到一平一曲、两曲两种模式中的一种当出现一平一曲时,只需运用导数求出“曲”的最值,将其与“。
5、 圆锥曲线中的轨迹问题轨迹是动点按照一定的规律即轨迹条件运动而形成的,这个轨迹条件一旦用动点坐标的数学表达式表示出来,轨迹方程就产生了根据动点的运动规律求出动点的轨迹方程,这是高考的常考点:一方面,求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面,求轨迹方程培养了学生数形结合的思想、函数与方程的思想以及化归与转化的思想模块1 整理方法 提升能力曲线轨迹方程的探求有两种题型,第一种题型是曲线类型已知,该题型常用的方法是找条件或用待定系数法,难。
6、 圆锥曲线中的最值与范围“以能力立意命题”是考试大纲总的要求,也是高考命题总的方向对学生能力的考察离不开思想方法的考察,在圆锥曲线的背景下讨论最值或范围问题,能系统的将函数与方程的思想、数形结合思想等多种数学思想结合在一起,更利于综合考察学生的能力模块1 整理方法 提升能力圆锥曲线中的最值与范围问题的类型较多,解法灵活多变,但总体上主要有以下3种方法:方法1:几何法若题目的条件或结论能明显体现几何特征及意义,则考虑利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解方法2:代数法把所求的量表示。