下列四种情形:x、y、z均为直线;x、y是直线,z是平面;z是直线,x、y是平面;x、y、z均为平面其中使“xz且yzxy”为真命题的是()A B C D答案C解析由正方体模型可知为假命题;由线面垂直的性质定理可知为真命题3(2016成都模拟)如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几
高考中的立体几何问题Tag内容描述:
1、下列四种情形:x、y、z均为直线;x、y是直线,z是平面;z是直线,x、y是平面;x、y、z均为平面其中使“xz且yzxy”为真命题的是()A B C D答案C解析由正方体模型可知为假命题;由线面垂直的性质定理可知为真命题3(2016成都模拟)如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是()A203 B243C204 D244答案A解析根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中正方体的棱长为2,半圆柱的底面半径为1,母线长为2,故该几何体的表面积为4522203.4.如图,在四棱锥VABCD中,底面ABCD为正方形,E、F分别为侧棱VC、VB上的点,且满足VC3EC,AF平面BDE,则_.答案2解析连接AC交BD于点O,连接EO,取VE的中点M,连接AM,MF,VC3E。
2、中,BB1底面ABC.因为AB平面ABC,所以BB1AB.又因为ABBC,BCBB1B,所以AB平面B1BCC1.又AB平面ABE,所以平面ABE平面B1BCC1.(2)证明方法一如图1,取AB中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FGAC,且FGAC.因为ACA1C1,且ACA1C1,所以FGEC1,且FGEC1,所以四边形FGEC1为平行四边形,所以C1FEG.又因为EG平面ABE,C1F平面ABE,所以C1F平面ABE.方法二如图2,取AC的中点H,连接C1H,FH.因为H,F分别是AC,BC的中点,所以HFAB,又因为E,H分别是A1C1,AC的中点,所以EC1AH,且EC1AH,所以四边形EAHC1为平行四边形,所以C1HAE,又C1HHFH,AEABA,所以平面ABE平面C1HF,又C1F平面C1HF,所以C1F平面ABE.(3)解因为AA1AC2,BC1,ABBC。
3、高考专题突破四高考中的立体几何问题大一轮复习讲义命题点求线线角例,湖北知名示范高中联合质检,若在三棱柱中,平面平面,则异面直线与所成角的余弦值为,空间角的求法多维探究题型一解析方法一令为的中点,连结,由题意知是等边三角形,所以,同理,因为平。