空间几何体的表面积与体积

1多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和2圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧2rlS圆锥侧rlS圆台侧(r1r2)l3.柱、锥、台和球的表面积和体积名称几何体表面积体积柱体

空间几何体的表面积与体积Tag内容描述:

1、球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积S侧2S底VSh锥体(棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下V(S上S下)h球S4R2VR3【知识拓展】1与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差(2)底面面积及高都相等的两个同类几何体的体积相等2几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,若球为正方体的外接球,则2Ra;若球为正方体的内切球,则2Ra;若球与正方体的各棱相切,则2Ra.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R.(3)正四面体的外接球与内切球的半径之比为31.【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)多面体的表面积等于各个面的面积之和()(2)锥体的体积等于底面积与高之积()(3)球的体积。

2、侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧2rlS圆锥侧rlS圆台侧(r1r2)l3.柱、锥、台、球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积S侧2S底VSh锥体(棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下V(S上S下)h球S4R2VR3概念方法微思考1.如何求旋转体的表面积?提示求旋转体的侧面积时需要将曲面展开为平面图形计算,而表面积是侧面积与底面积之和.2.如何求不规则几何体的体积?提示求不规则几何体的体积要注意分割与补形,将不规则的几何体通过分割或补形转化为规则的几何体求解.题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)多面体的表面积等于各个面的面积之和.。

3、与三棱锥的面围成的几何体的体积为AB或CD或4设,是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为ABCD5已知在三棱锥中,且平面平面,那么三棱锥外接球的体积为ABCD6已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为ABCD7正三棱柱的底面边长为2,侧棱长为,D为BC中点,则三棱锥的体积为A3BC1D8以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱侧面积为ABC2D19将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为A4B3C2D10长方体的长、宽、高分别为3,2,1,其顶点都在球的球面上,则球的表面积为_11(已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_12已知四棱锥的底面是边长为2的正方形,侧面是等边三角形,且侧面。

4、必考部分 第七章立体几何第七章立体几何 第二讲空间几何体的表面积与体积 1 知识梳理双基自测 2 考点突破互动探究 3 名师讲坛素养提升 返回导航 1 知识梳理双基自测 返回导航 高考一轮总复习 数学新高考 第七章立体几何 知识点一柱锥台和。

5、INNOVATIVE DESIGN 第八章 第2节空间几何体的表面积与体积 知识分类落实 考点聚焦突破 课后巩固作业 内 容 索 引 1 2 3 知识分类落实 夯实基础回扣知识1 索引 1多面体的表多面体的表侧侧面积面积 知识梳理 索引 2。

6、抓住抓住2个个考点考点突破突破3个考向个考向揭秘揭秘3年高考年高考第第2讲空间几何体的表面积与体积讲空间几何体的表面积与体积2014年高考会这样考年高考会这样考1以三视图为载体,考查空间几何体的表面积与体积以三视图为载体,考查空间几何体的表。

7、11,33空间几何体的表面积与体积空间几何体的表面积与体积12023,1,231,柱体,锥体,台体的表面积柱体,锥体,台体的表面积正方体,长方体的表面积就是各个面的面积之和,正方体,长方体的表面积就是各个面的面积之和,22023,1,23探。

标签 > 空间几何体的表面积与体积[编号:78624]

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|