1、1 17.5 一元二次方程的应用-增长率问题 教学 目标 知识与技能:知识与技能: 1.使学生会用列一元二次方程的方法解决有关增长率、降低率问题 2.进一步培养学生用一元二次方程解决实际问题的能力。 过程与方法:过程与方法:通过自主探索、合作交流等活动,发展学生数学思维,培养学 生合作学习意识、动脑习惯,激发学生学习热情。 情感态度与价值观:情感态度与价值观:使学生认识到数学与生活紧密相连,让他们在学习活动 中获得成功的体验,建立自信心,从而使学生更加热爱数学、热爱生活。 重难 点 重点:列一元二次方程解应用题。 难点:将实际问题提炼成数学问题。 教教 学学 过过 程程 一、一、情景导入情景导
2、入(3 分钟)分钟) 我们经常从电视新闻中听到或看到有关增长率的问题。例如 今年我们市人均收入为 a 元,比去年同期增长 x%;某厂预计两年 后使生产总值翻一番,.。由此我们可以看出增长率问题无处不 在。这节课我们就一起来探索增长率的问题。 解答: 1某工厂七月份生产值为 100 万元,计划八、九两月的产值 平均每月比上月递增 20%,求八、九两月的产值各是多少万元? 2某商品的售价为 1000 元,连续两次降价 20%后,那么现 在实际售价为多少元? 二、二、互动探究问题一互动探究问题一: (: (10 分钟)分钟) 例一例一 原来每盒 27 元的一种药品,经两次降价后每盒售价为 9 元.求
3、该药品两次降价的平均降价率是多少?(精确到 1%) 分析:设这种药品两次降价的平均率为 x,第一次降价的基础 是 27 元,所以第一次降价后的药品的价格为 27( 1x)元,第 二次降价的基础是 27( 1x)元, 所以第二次降价后的价格为 27( 1x( 1x)元,即为 27 ( 1x)2元。 所以得方程 27( 1x)2 =9 解得 x1 1.58 (不符合题意,舍去) x2 = 0.42 = 42% 答:该药品两次降价的平均降价率是 42% 。 三、三、互动探究问题二互动探究问题二: (: (12 分钟)分钟) 例二例二 如图, 一农户原来种植的花生, 每公顷产量为 3 000 kg,
4、出油率为 50% (即每 100 kg 花生可加工出 花生油 50 kg).现在种植 2 教教 学学 过过 程程 新品种花生后,每公顷收获的花生可加工出花生油 1 980 kg,已知 花生出油率的增长率是产量增长率的 2 1 。求新品种花生产量的增 长率。 分析:设新品种花生油生产量的年平均增长率为 x, 原来每公顷的产量为 3000 kg,增长率为 x ; 现在每公顷的产量为 3000( 1 + x) kg, 原来的出油率为 50%,出油率增长了 , 现在的出油率为 50%(1 + ) , 现在每公顷能出花生油 3000( 1 + x) 50%(1 + ) 既得方程 3000( 1 + x
5、)* 50%(1 + )=1980 解得 x1 3.2 (不符合题意,舍去) x2 = 0.2 = 20% 答:新品种花生产量的增长率是 20% 。 四、四、巩固练习:巩固练习: (13 分钟)分钟) 见课件 五、课堂小结:五、课堂小结: (1 分钟)分钟) 增长率(降低率)问题: 基数(1 + 平均增长率)2实际数 即 a(1 + x)2=A 基数(1 - 平均增长率)2实际数 即 a(1 x)2=A 六、布置作业: (六、布置作业: (1 分钟)分钟) 1、必做:完成教材第 45 页 习题 17.5 第 4 题 第 48 页 复习题 A 组 第 8 题 2、补充:请完成导学测评剩余部分习题 板书板书 设计设计 一、情景导入: 四、巩固练习: 二、互动探究问题一: 五、课堂小结: 三、互动探究问题二: 六、布置作业: x 2 1 x 2 1 x 2 1 x 2 1 3 教 学 反 思 本节课上完后,感觉学生在做应用题方面,还是读题审题很关键。再就是解方 程的时候,选择方法很重要。