1、,3 简单的轴对称图形 第1课时 等腰三角形,北师大版 七年级下册,观察下列各种图形,判断是不是轴对称图形, 能找出对称轴吗?,新课导入,认识等腰三角形:,新课推进,有两条边相等的三角形叫等腰三角形,生活中的等腰三角形,1.等腰三角形是轴对称图形吗?找出对称轴。,2.顶角的平分线所在的直线是等腰三角形的 对称轴吗?,3.底边上的中线所在的直线是等腰三角形的 对称轴吗?底边上的高所在直线呢?,4.沿对称轴对折,你能发现等腰三角形的哪 些特征?说说你的理由。,思考,拿出你的等腰三角形纸片,折折看,你能发现什么现象?,等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?,
2、看看你本组其他同学的情况,共同交流, 能得出什么结论?,小组合作交流,(1)等腰三角形是轴对称图形。 (2)B =C (3)BADCAD,AD为顶角的平分线 (4)ADB=ADC=90AD为底边上的高 (5)BD=CD,AD为底边上的中线。,现象:,现象(3)、(4)、(5)能用一句话归纳出来吗?,现象(2)能用一句话归纳出来吗?,等腰三角形的两个底角相等,等腰三角形的顶角平分线、底边上的高和底边上的中线互相重合(简称“三线合一”),归纳:,在ABC中 AD是角平分线, BAD=CAD。 在ABD和ACD中, AB=AC,BAD=CAD,AD=AD ABDACD BD=CD, ADB=ADC=
3、90 AD是ABC的角平分线、底边上的中线、底边上的高。,三线合一吗?,等腰三角形的特征,1.等腰三角形是轴对称图形,3.等腰三角形的两个底角相等。,2.等腰三角形的顶角平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。,三边都相等的三角形是等边三角形也叫 正三角形,(1)等边三角形是轴对称图形吗?找出对称轴,(2)你能发现它的哪些特征?,想一想,等边三角形的性质:,1.等边三角形是轴对称图形。 2.等边三角形每个角的平分线和这个角的对 边上的中线、高线重合(“三线合一”),它们所在的直线都是等边三角形的对称轴。等边三角形共有三条对称轴。 3.等边
4、三角形的各角都相等,都等于60,2.你能尝试用圆规吗?,如图,是由大小不等的等边三角形组成的图案,请找出它的对称轴。,如图,在等腰ABC中,AB=AC顶角A=100那么底角B=_C =_ .,40,40,2. 在ABC中,AB=AC,B=72,那么 A=_,3. 在等腰三角形ABC中,有一个角为50,那么另外两个角分别是多少?,36,课堂演练,4.如图,在ABC中,AB=AC时, (1)因为ADBC 所以 _= _;_=_ (2) 因为AD是中线 所以_; _=_ (3) 因为 AD是角平分线 所以_ _;_=_,BAD,CAD,CD,BD,AD,BC,BAD,CAD,AD,BC,BD,CD,
5、小组竞赛,每一幅图画后面都有一道习题,选择一幅你喜欢的图画吧!,如果ABC是轴对称图形,则它的对称轴一定是( ) A. 某一条边上的高。 B. 某一条边上的中线。 C. 平分一角和这个角的对边的直线。 D. 某一个角的平分线。,C,1、若等腰三角形的一个内角为 40,则它的另外两个内角为_ 2、 若等腰三角形的一个内角为120,则它的另外两个内角为_,70,70或40,100 ,30,30,一等腰三角形的两边长为2和4,则该等腰三角形的周长为_ 一等腰三角形的两边长为3和4,则该等腰三角形的周长为_,10,10或11,已知等腰三角形的腰长比底边长多2cm,并且它的周长为16cm,求这个等腰三角形的各边长。,解:设三角形的底边长为xcm,则其腰长为 (x+2)cm,根据题意得: 2(x+2)+x=16 解得 x=4 等腰三角形三边长为4cm,6cm,6cm。,课堂小结,通过这节课的学习活动,你有什么收获?,1.从课后习题中选取; 2.完成练习册本课时的习题。,课后作业,学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。 高士其,