初高中数学衔接教材7讲word版配答案(交大附中版).doc

上传人(卖家):四川三人行教育 文档编号:1584984 上传时间:2021-07-16 格式:DOC 页数:26 大小:1.33MB
下载 相关 举报
初高中数学衔接教材7讲word版配答案(交大附中版).doc_第1页
第1页 / 共26页
初高中数学衔接教材7讲word版配答案(交大附中版).doc_第2页
第2页 / 共26页
初高中数学衔接教材7讲word版配答案(交大附中版).doc_第3页
第3页 / 共26页
初高中数学衔接教材7讲word版配答案(交大附中版).doc_第4页
第4页 / 共26页
初高中数学衔接教材7讲word版配答案(交大附中版).doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、亲爱的交大附中新高一的同学们: 祝贺你们步入高中时代, 下面有一个摆在我们面前的棘手问题急需我们师生共同努力才 能解决,即“初高中衔接问题” 。由于课程改革,目前我区初中是新课标,而高中也是新课 程的学习,初高中不衔接问题现在显得比较突出。面对教学中将存在的问题,我们高一数学 组的老师们假期里加班加点,赶制了一份校本衔接教材,意在培养大家自学能力,同时降低 同学们初高中衔接中的不适应度, 希望大家将假期利用起来, 一开学对这篇自学教材的学习 将有相应的检测,愿大家为新学期做好准备。 一、数与式的运算一、数与式的运算 一一) 、必会的乘法公式、必会的乘法公式 【公式【公式 1】cabcabcba

2、cba222)( 2222 证明证明: 2222 )(2)()()(ccbabacbacba cabcabcbacbcacbaba222222 222222 等式成立 【例例 1】计算: 22 ) 3 1 2(xx 解解:原式= 22 3 1 )2(xx 9 1 3 22 3 8 22 )2( 3 1 2 3 1 2)2(2) 3 1 ()2()( 234 222222 xxxx xxxxxx 说明说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列 【公式【公式 2】 3322 )(babababa(立方和公式立方和公式) 证明证明: 3332222322 )(bababbaabbaaba

3、baba 说明说明:请同学用文字语言表述公式 2. 【例例 2】计算:(2a+b) (4a2-2ab+b2)=8 a3+b3 【公式【公式 3】 3322 )(babababa(立方差公式立方差公式) 1计算 (1) (3x+2y) (9x2-6xy+4y2)= (2) (2x-3) (4x2+6xy+9)= (3)) 9 1 6 1 4 1 ( 3 1 2 1 2 mmm= (4) (a+b) (a2-ab+b2) (a-b) (a2+ab+b2)= 2利用立方和、立方差公式进行因式分解 (1)27m3-n3= (2)27m3- 8 1 n3= (3)x3-125= (4) m6-n6= 【

4、公式【公式 4】 33322 ()33ababa bab 【公式【公式 5】 33223 ()33abaa babb 【例例 3】计算: (1))416)(4( 2 mmm(2)) 4 1 10 1 25 1 )( 2 1 5 1 ( 22 nmnmnm (3))164)(2)(2( 24 aaaa(4) 22222 )(2(yxyxyxyx 解解: (1)原式= 333 644mm (2)原式= 3333 8 1 125 1 ) 2 1 () 5 1 (nmnm (3)原式=644)()44)(4( 63322242 aaaaa (4)原式= 2222222 )()()(yxyxyxyxyx

5、yx 6336233 2)(yyxxyx 说明说明: (1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式 的结构 (2)为了更好地使用乘法公式,记住 1、2、3、4、20 的平方数和 1、2、3、 4、10 的立方数,是非常有好处的 【例例 4】已知 2 310 xx ,求 3 3 1 x x 的值 解解: 2 310 xx 0 x3 1 x x 原式=18)33(33) 1 )( 1 () 1 1)( 1 ( 22 2 2 x x x x x x x x 说明说明:本题若先从方程 2 310 xx 中解出x的值后,再代入代数式求值,则计算较烦 琐本题是根据条件式与求值式

6、的联系,用整体代换的方法计算,简化了计算请注意整体 代换法本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举 【例例 5】已知0cba,求 111111 ()()()abc bccaab 的值 解解:bacacbcbacba, 0 原式= ab ba c ac ca b bc cb a 333 ()()()aabbccabc bcacababc abccabccabbababa3)3(3)( 32233 abccba3 333 ,把代入得原式=3 3 abc abc 说明说明:注意字母的整体代换技巧的应用 二二) 、根式、根式 式子(0)a a 叫做二次根式,其性质如下:

7、(1) 2 ()(0)aa a(2) 2 |aa (3)(0,0)abab ab(4)(0,0) bb ab a a 【例例 6】化简下列各式: (1) 22 ( 32)( 31)(2) 22 (1)(2) (1)xxx 解解:(1) 原式=|32|31| 2331 1 *(2) 原式= (1)(2)23 (2) |1|2| (1)(2)1 (1x2) xxxx xx xx 说明说明:请注意性质 2 |aa的使用:当化去绝对值符号但字母的范围未知时,要对字 母的取值分类讨论 【例例 7】计算(没有特殊说明,本节中出现的字母均为正数):(1) 8 3 (2) 3 23 (3) 11 ab (4)

8、 3 28 2 x xx 解解:(1) 8 3 = 4 6 28 23 8 3 (2) 原式= 2 3(23)3(23) 63 3 23(23)(23) (3) 原式= 22 aba bab abab (4) 原式= 22 2 22222 23 2 22 x x xxxx xxxx x 说明说明: (1)二次根式的化简结果应满足: 被开方数的因数是整数,因式是整式; 被开方数不含能开得尽方的因数或因式 (2)二次根式的化简常见类型有下列两种: 被开方数是整数或整式化简时,先将它分解因数或因式,然后把开得尽方的因数或 因式开出来; 分母中有根式(如 3 23 )或被开方数有分母(如 2 x )

9、这时可将其化为 a b 形式(如 2 x 可 化为 2 x ) ,转化为 “分母中有根式”的情况化简时,要把分母中的根式化为有理式,采 取分子、分母同乘以一个根式进行化简(如 3 23 化为 3(23) (23)(23) ,其中23与 23叫做互为有理化因式) 有理化因式和分母有理化有理化因式和分母有理化 有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两 个代数式叫做有理化因式。如 a 与 a ; ybxa 与 ybxa 互为有理化因式。 分母有理化:在分母含有根式的式子里,把分母中的根式化去,叫做分母有理化。 【例例 8】计算: (1) 2 (1)(1)()ab

10、abab(2) aa aabaab 解解:(1) 原式= 22 (1)()(2)2221baaabbaabb (2) 原式= 11 ()() aa aabaababab ()()2 ()() ababa ab abab 说明说明:有理数的的运算法则都适用于加法、乘法的运算律以及多项式的乘法公式、分式 二次根式的运算 【例例 9】设 2323 , 2323 xy ,求 33 xy的值 解解: 2 2 (23)23 74 3,74 3 14,1 2323 xyxyxy 原式= 2222 ()()()()314(143)2702xy xxyyxyxyxy 说明说明:有关代数式的求值问题:(1)先化简

11、后求值;(2)当直接代入运算较复杂时,可根 据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量 1二次根式 2 aa 成立的条件是() A0a B0a C0a Da是任意实数 2若3x ,则 2 96|6|xxx的值是() ABCD 3计算: (1) 2 (34 )xyz(2) 2 (21)()(2 )abab ab (3) 322 )()(babababa(4) 22 1 (4 )(4) 4 ababab 4化简(下列a的取值范围均使根式有意义): (1) 3 8a(2) 1 a a (3) 4ab a bb a (4) 112 23231 5化简: (1) 2 1 9102

12、325 mm mmm m (2) 2 22 (0) 2 xyxy xy xx y 6若 11 2 xy ,则 33xxyy xxyy 的值为(): A 3 5 B 3 5 C 5 3 D 5 3 7设 11 , 3232 xy ,求代数式 22 xxyy xy 的值 8已知 111 20,19,21 202020 axbxcx,求代数式 222 abcabbcac 的值 9设 51 2 x ,求 42 21xxx的值 10化简或计算: 练练习习 (1) 113 ( 184) 23 23 (2) 2 21 22(25) 3 52 (3) 2 x xxyxxyy xyyx xyy 答案:答案: 1

13、 C2 A 3 (1) 222 9166824xyzxyxzyz(2) 22 353421aabbab (3) 22 33a bab(4) 33 1 16 4 ab 4 2()2 22 1 2 ab aaa ab 5 2m mxy6 D7 13 3 6 8393510 4 3 3, 3 xy y 三三) 、分式、分式 当分式 A B 的分子、分母中至少有一个是分式时, A B 就叫做繁分式,繁分式的化简常用 以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质 【例例 10】化简 1 1 x x x x x 解法一解法一:原式= 22 2 (1)1 1(1) 1(1)(1)1 1 x

14、 xxxxxx xxxx xxxxx xxx xxxx x x 解法一解法一:原式= 2 2 (1)1 (1)(1) 11 1 () x xxxxx xxxxx xxxx xxx xx xx x 说明说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解 法二则是利用分式的基本性质 AAm BBm 进行化简一般根据题目特点综合使用两种方法 【例例 11】化简 2 22 3961 62279 xxxx xxxx 解解:原式= 2 22 3961161 2(3)3(3)(3)2(3)(3)(39)(9) xxxxx xxxxxxxxxx 2 2(3)12(1)(3)(3)3

15、2(3)(3)2(3)(3)2(3) xxxxx xxxxx 说明说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分 解再进行约分化简;(2) 分式的计算结果应是最简分式或整式 四四) 、多项式除以多项式、多项式除以多项式 做竖式除法时,被除式、除式都要按同一字母的降幂排列,缺项补零(除式的缺项也可 以不补零,但做其中的减法时,要同类项对齐) ,要特别注意,得到每个余式的运算都是减 法。结果表示为:被除式=除式商式+余式 【例【例 1】计算)3()3( 24 xxx 解: 3 93 93 33 30 03003 2 2 2 24 42 x x x xx xx xx

16、x xxxxx39)3()3()3( 224 计算 1)32()2713103( 223 xxxxx 2) 1()22( 232 xxx 3已知1453, 2112219 23234 xxxBxxxxA 求: 22 BA 答案:答案: 1 32 1514 43)32()2713103( 2 223 xx x xxxxxx 2 1 2) 1()22( 2 232 x x xxxx 3 222 )23(xBA 练练习习 二二、因式分解因式分解 因式分解是代数式的一种重要的恒等变形, 它与整式乘法是相反方向的变形 在分式运 算、解方程及各种恒等变形中起着重要的作用是一种重要的基本技能 因式分解的方法

17、较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完 全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等 一)、公式法一)、公式法 【例【例 1】用立方和或立方差公式分解下列各多项式: (1) 3 8x(2) 3 0.12527b 分析:分析: (1)中, 3 82,(2)中 333 0.1250.5 ,27(3 )bb 解:解:(1) 3332 82(2)(42)xxxxx (2) 33322 0.125270.5(3 )(0.53 )0.50.5 3(3 ) bbbbb 2 (0.53 )(0.251.59)bbb 说明:说明:(1) 在运用立方和(差)

18、公式分解因式时,经常要逆用幂的运算法则,如 333 8(2)a bab,这里逆用了法则()n nn aba b;(2) 在运用立方和(差)公式分解因式时, 一定要看准因式中各项的符号 【例【例 2】分解因式: (1) 34 381a bb(2) 76 aab 分析分析: (1) 中应先提取公因式再进一步分解; (2) 中提取公因式后, 括号内出现 66 ab, 可看着是 3232 ()()ab或 2323 ()()ab 解:解:(1) 343322 3813 (27)3 (3 )(39)a bbb abb ab aabb (2) 76663333 ()()()aaba aba abab 222

19、2 2222 ()()()() ()()()() a ab aabbab aabb a ab ab aabbaabb 二二)、分组分解法、分组分解法 从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式而对于 四项以上的多项式, 如mambnanb既没有公式可用, 也没有公因式可以提取 因此, 可以先将多项式分组处理 这种利用分组来因式分解的方法叫做分组分解法 分组分解法的 关键在于如何分组 1分组后能提取公因式分组后能提取公因式 【例【例 3】把2105axaybybx分解因式 分析分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按x的降幂排列,然 后从两组分别提出

20、公因式2a与b,这时另一个因式正好都是5xy,这样可以继续提取 公因式 解:解:21052 (5 )(5 )(5 )(2)axaybybxa xyb xyxyab 说明说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的 方法本题也可以将一、四项为一组,二、三项为一组,同学不妨一试 【例【例 4】把 2222 ()()ab cdabcd分解因式 分析分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因 式 解:解: 22222222 ()()ab cdabcdabcabda cdb cd 2222 ()()abca cdb cdabd ()()(

21、)()ac bcadbd bcadbcad acbd 说明说明:由例 3、例 4 可以看出,分组时运用了加法结合律,而为了合理分组,先运用了 加法交换律,分组后,为了提公因式,又运用了分配律由此可以看出运算律在因式分解中 所起的作用 2分组后能直接运用公式分组后能直接运用公式 【例【例 5】把 22 xyaxay分解因式 分析分析: 把第一、 二项为一组, 这两项虽然没有公因式, 但可以运用平方差公式分解因式, 其中一个因式是xy; 把第三、 四项作为另一组, 在提出公因式a后, 另一个因式也是xy. 解:解: 22 ()()()()()xyaxayxy xya xyxy xya 【例【例 6

22、】把 222 2428xxyyz分解因式 分析:分析:先将系数 2 提出后,得到 222 24xxyyz,其中前三项作为一组,它是一 个完全平方式,再和第四项形成平方差形式,可继续分解因式 解:解: 222222 24282(24)xxyyzxxyyz 22 2()(2 ) 2(2 )(2 )xyzxyz xyz 说明说明:从例 5、例 6 可以看出:如果一个多项式的项分组后,各组都能直接运用公式或 提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多 项式就可以分组分解法来分解因式 三三)、十字相乘法、十字相乘法 1 2 ()xpq xpq型的因式分解型的因式分解

23、 这类式子在许多问题中经常出现,其特点是: (1) 二次项系数是 1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之 和 22 ()()()()()xpq xpqxpxqxpqx xpq xpxp xq 因此, 2 ()()()xpq xpqxp xq 运用这个公式,可以把某些二次项系数为 1 的二次三项式分解因式 【例【例 7】把下列各式因式分解: (1) 2 76xx(2) 2 1336xx 解:解:(1) 6( 1)( 6),( 1)( 6)7 2 76( 1)( 6)(1)(6)xxxxxx (2) 3649,4913 2 1336(4)(9)xxxx 说明说明:此

24、例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项 系数的符号相同 【例【例 8】把下列各式因式分解: (1) 2 524xx(2) 2 215xx 解:解:(1) 24( 3)8,( 3)85 2 524( 3)(8)(3)(8)xxxxxx (2) 15( 5)3,( 5)32 2 215( 5)(3)(5)(3)xxxxxx 说明说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的 因数与一次项系数的符号相同 【例【例 9】把下列各式因式分解: (1) 22 6xxyy(2) 222 ()8()12xxxx 分析分析:(1) 把 22 6xxyy

25、看成x的二次三项式,这时常数项是 2 6y,一次项系数是 y,把 2 6y分解成3y与2y的积,而3( 2 )yyy ,正好是一次项系数 (2) 由换元思想,只要把 2 xx整体看作一个字母a,可不必写出,只当作分解 二次三项式 2 812aa 解:解:(1) 2222 66(3 )(2 )xxyyxyxxy xy (2) 22222 ()8()12(6)(2)xxxxxxxx (3)(2)(2)(1)xxxx 2一般二次三项式一般二次三项式 2 axbxc型的因式分解型的因式分解 大家知道, 2 1122121 22 11 2 ()()()a xca xca a xa ca c xc c 反

26、过来,就得到: 2 121 22 11 21122 ()()()a a xa ca c xc ca xca xc 我们发现,二次项系数a分解成 12 a a,常数项c分解成 1 2 c c,把 1212 ,a a c c写成 11 22 ac ac , 这里按斜线交叉相乘, 再相加, 就得到 1 22 1 a ca c, 如果它正好等于 2 axbxc 的一次项系数b, 那么 2 axbxc就可以分解成 1122 ()()a xca xc, 其中 11 ,a c位于上一 行, 22 ,a c位于下一行 这种借助画十字交叉线分解系数, 从而将二次三项式分解因式的方法, 叫做十字相乘法 必须注意,

27、分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确 定一个二次三项式能否用十字相乘法分解 【例【例 10】把下列各式因式分解: (1) 2 1252xx(2) 22 568xxyy 解:解:(1) 2 1252(32)(41)xxxx 32 4 1 (2) 22 568(2 )(54 )xxyyxyxy 1 2 54 y y 说明说明:用十字相乘法分解二次三项式很重要当二次项系数不是 1 时较困难,具体分解 时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是 否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号 四四)、其它

28、因式分解的方法、其它因式分解的方法 1配方法配方法 【例【例 11】分解因式 2 616xx 解:解: 222222 616233316(3)5xxxxx (35)(35)(8)(2)xxxx 说明说明: 这种设法配成有完全平方式的方法叫做配方法, 配方后将二次三项式化为两个平 方式,然后用平方差公式分解当然,本题还有其它方法,请大家试验 2拆、添项法拆、添项法 【例【例 12】分解因式 32 34xx 分析分析:此多项式显然不能直接提取公因式或运用公式,分组也不易进行细查式中无一 次项,如果它能分解成几个因式的积,那么进行乘法运算时,必是把一次项系数合并为 0 了,可考虑通过添项或拆项解决

29、解:解: 3232 34(1)(33)xxxx 22 (1)(1)3(1)(1)(1)(1)3(1)xxxxxxxxx 22 (1)(44)(1)(2)xxxxx 说明:说明:本解法把原常数 4 拆成 1 与 3 的和,将多项式分成两组,满足系数对应成比例, 造成可以用公式法及提取公因式的条件本题还可以将 2 3x拆成 22 4xx ,将多项式分成 两组 32 ()xx和 2 44x 一般地,把一个多项式因式分解,可以按照下列步骤进行: (1) 如果多项式各项有公因式,那么先提取公因式; (2) 如果各项没有公因式,那么可以尝试运用公式来分解; (3) 如果用上述方法不能分解, 那么可以尝试用

30、分组或其它方法(如十字相乘法)来分解; (4) 分解因式,必须进行到每一个多项式因式都不能再分解为止 1把下列各式分解因式: (1) 3 27a (2) 3 8m(3) 3 278x 2把下列各式分解因式: (1) 34 xyx(2) 33nn xx y (3) 2232 (2 )yxxy 3把下列各式分解因式: (1) 2 32xx(2) 2 627xx(3) 22 45mmnn 4把下列各式分解因式: (1) 543 1016axaxax(2) 212 6 nnn aaba b (3) 22 (2 )9xx (4) 22 82615xxyy(5) 2 7()5()2abab 5把下列各式分

31、解因式: 练练习习 (1) 2 33axayxyy(2) 32 8421xxx(3) 2 51526xxxyy (4) 22 414xyxy (5) 432234 abbababa(6) 663 21xyx (7) 2( 1)()xxy xyx 6已知 2 ,2 3 abab,求代数式 2222 2a ba bab的值 7证明:当n为大于 2 的整数时, 53 54nnn能被 120 整除 8已知0abc,求证: 3223 0aa cb cabcb 答案:答案: 1 222 (3)(39),(2)(42),(23 )(469),aaammmxxx 2 2222 ()(),()(), n x x

32、yyxyxxxy xxyy 22432 (1) (4321)yxxxxx 3(2)(1)xx,(9)(3)xx,(5 )()mn mn 4 3( 2)(8)axxx;(3 )(2 ) n aab ab; 2 (3)(1)(23)xxxx; (2)(415 ),xyxy (772)(1)abab 5 2 ()(3),(21) (21),(3)(52 )xyayxxxxy;(1 2)(12),xyxy 23333 () (),(1)(1), ()(1)ab ababxyxyx xy xy 6 28 3 7 53 54(2)(1) (1)(2)nnnnnn nn 8 322322 ()()aa cb

33、 cabcbaabbabc 三、一元二次方程根与系数的关系三、一元二次方程根与系数的关系 现行初中数学教材主要要求学生掌握一元二次方程的概念、 解法及应用, 而一元二次方 程的根的判断式及根与系数的关系, 在高中教材中的二次函数、 不等式及解析几何等章节有 着许多应用本节将对一元二次方程根的判别式、根与系数的关系进行阐述 一)、一元二次方程的根的判断式一)、一元二次方程的根的判断式 一元二次方程 2 0 (0)axbxca,用配方法将其变形为: 2 2 2 4 () 24 bbac x aa (1) 当 2 40bac时,右端是正数因此,方程有两个不相等的实数根: 2 4 2 bbac x a

34、 (2) 当 2 40bac时,右端是零因此,方程有两个相等的实数根: 1,2 2 b x a (3) 当 2 40bac时,右端是负数因此,方程没有实数根 由于可以用 2 4bac的取值情况来判定一元二次方程的根的情况 因此, 把 2 4bac叫 做一元二次方程 2 0 (0)axbxca的根的判别式,表示为: 2 4bac 【例【例 1】不解方程,判断下列方程的实数根的个数: (1) 2 2310 xx (2) 2 4912yy(3) 2 5(3)60 xx 解:解:(1) 2 ( 3)4 2 110 , 原方程有两个不相等的实数根 (2) 原方程可化为: 2 41290yy 2 ( 12

35、)4 4 90 , 原方程有两个相等的实数根 (3) 原方程可化为: 2 56150 xx 2 ( 6)4 5 152640 , 原方程没有实数根 说明:说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式 【例【例 2】已知关于x的一元二次方程 2 320 xxk,根据下列条件,分别求出k的 范围: (1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根 (3)方程有实数根;(4) 方程无实数根 解:解: 2 ( 2)43412kk (1) 1 4120 3 kk;(2) 1 4120 3 kk; (3) 3 1 0124kk;(4) 3 1 0124kk 【例【例 3】已

36、知实数x、y满足 22 210 xyxyxy ,试求x、y的值 解:解:可以把所给方程看作为关于x的方程,整理得: 22 (2)10 xyxyy 由于x是实数,所以上述方程有实数根,因此: 222 (2)4(1)300yyyyy , 代入原方程得: 2 2101xxx 综上知:1,0 xy 二)、一元二次方程的根与系数的关系二)、一元二次方程的根与系数的关系 一元二次方程 2 0 (0)axbxca的两个根为: 22 44 , 22 bbacbbac xx aa 所以: 22 12 44 22 bbacbbacb xx aaa , 22222 12 22 44()(4)4 22(2 )4 bb

37、acbbacbbacacc xx aaaaa 定理:如果一元二次方程 2 0 (0)axbxca的两个根为 12 ,x x,那么: 1212 , bc xxx x aa 说明说明: 一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现, 所以通常把此 定理称为”韦达定理” 【例【例 4】若 12 ,x x是方程 2 220070 xx的两个根,试求下列各式的值: (1) 22 12 xx;(2) 12 11 xx ;(3) 12 (5)(5)xx;(4) 12 |xx 分析分析:本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂的计算这 里,可以利用韦达定理来解答 解:解:由题意

38、,根据根与系数的关系得: 1212 2,2007xxx x (1) 2222 121212 ()2( 2)2( 2007)4018xxxxx x (2) 12 1212 1122 20072007 xx xxx x (3) 121212 (5)(5)5()2520075( 2)251972xxx xxx (4) 222 12121212 |()()4( 2)4( 2007)4 502xxxxxxx x 说明:说明:利用根与系数的关系求值,要熟练掌握以下等式变形: 222 121212 ()2xxxxx x, 12 1212 11xx xxx x , 22 121212 ()()4xxxxx x

39、, 2 121212 |()4xxxxx x, 22 12121212 ()x xx xx xxx, 333 12121212 ()3()xxxxx xxx等等韦达定理体现了整体思想 *【例【例 5】一元二次方程 04 2 axx 有两个实根,一个比 3 大,一个比 3 小,求a的取 值范围。 解一:解一:由 0)3)(3( 0 21 xx 解得: 3a 解二:解二:设 )(xf axx4 2 ,则如图所示,只须 0)3(f , 解得 3a * 【例例 6】 已知一元二次方程 065)9( 222 aaxax 一个根小于 0, 另一根大于 2, 求a的取值范围。 解:解:如图,设 65)9()

40、( 222 aaxaxxf 则只须 0)2( 0)0( f f ,解之得 3 8 1 32 a a 3 8 2 a 【例【例 7】已知关于x的方程 22 1 (1)10 4 xkxk ,根据下列条件,分别求出k的值 (1) 方程两实根的积为 5; (2) 方程的两实根 12 ,x x满足 12 |xx 分析:分析:(1) 由韦达定理即可求之;(2) 有两种可能,一是 12 0 xx,二是 12 xx, 所以要分类讨论 解:解:(1) 方程两实根的积为 5 22 2 12 1 (1)4(1)0 3 4 ,4 12 15 4 kk kk x xk 所以,当4k 时,方程两实根的积为 5 (2) 由

41、 12 |xx得知: 当 1 0 x 时, 12 xx,所以方程有两相等实数根,故 3 0 2 k ; x y 02 x y x=2 03 当 1 0 x 时, 1212 0101xxxxkk ,由于 3 0 2 k ,故1k 不合题意,舍去 综上可得, 3 2 k 时,方程的两实根 12 ,x x满足 12 |xx 说明说明:根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实 根的条件,即所求的字母应满足0 【例【例 8】已知 12 ,x x是一元二次方程 2 4410kxkxk 的两个实数根 (1) 是否存在实数k,使 1212 3 (2)(2) 2 xxxx 成立?若

42、存在,求出k的值; 若不存在,请您说明理由 (2) 求使 12 21 2 xx xx 的值为整数的实数k的整数值 解:解:(1) 假设存在实数k,使 1212 3 (2)(2) 2 xxxx 成立 一元二次方程 2 4410kxkxk 的两个实数根 2 40 0 ( 4 )4 4 (1)160 k k kk kk , 又 12 ,x x是一元二次方程 2 4410kxkxk 的两个实数根 12 12 1 1 4 xx k x x k 222 121212121212 (2)(2)2()52()9xxxxxxx xxxx x 939 425 k k k ,但0k 不存在实数k,使 1212 3

43、(2)(2) 2 xxxx 成立 (2) 222 121212 211212 ()44 2244 11 xxxxxxk xxx xx xkk 要使其值是整数,只需1k 能被 4 整除,故11, 2, 4k ,注意到0k , 要使 12 21 2 xx xx 的值为整数的实数k的整数值为2, 3, 5 说明说明:(1) 存在性问题的题型,通常是先假设存在,然后推导其值,若能求出,则说明 存在,否则即不存在 (2) 本题综合性较强,要学会对 4 1k 为整数的分析方法 1一元二次方程 2 (1)210k xx 有两个不相等的实数根,则k的取值范围是() A2k B2,1kk且C2k D2,1kk且

44、 2若 12 ,x x是方程 2 2630 xx的两个根,则 12 11 xx 的值为() A2B2C 1 2 D 9 2 3已知菱形 ABCD 的边长为 5,两条对角线交于 O 点,且 OA、OB 的长分别是关于x的方 程 22 (21)30 xmxm的根,则m等于() A3B5C53或D53 或 4若实数ab,且, a b满足 22 850,850aabb,则 11 11 ba ab 的值为 () A20B2C220或D220或 5若方程 2 2(1)30 xkxk的两根之差为 1,则k的值是 _ 6 设 12 ,x x是方程 2 0 xpxq的两实根, 12 1,1xx是关于x的方程 2

45、 0 xqxp 的两实根,则p= _ ,q= _ 7对于二次三项式 2 1036xx,小明得出如下结论:无论x取什么实数,其值都不可能 等于 10,您是否同意他的看法?请您说明理由 8一元二次方程 02)13(7 22 mmxmx 两根 1 x 、 2 x 满足 210 21 xx 求m取值范围。 9已知关于x的一元二次方程 2 (41)210 xmxm (1) 求证:不论为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为 12 ,x x,且满足 12 111 2xx ,求m的值 10已知关于x的方程 22 1 (1)10 4 xkxk (1)k取何值时,方程存在两个正实数根?

46、练练习习 (2) 若该方程的两根是一个矩形相邻两边的长,当矩形的对角线长是5时,求k的值 11已知关于x的方程 2 (1)(23)10kxkxk 有两个不相等的实数根 12 ,x x (1) 求k的取值范围; (2) 是否存在实数k,使方程的两实根互为相反数?如果存在,求出k的值;如果不存 在,请您说明理由 12若 12 ,x x是关于x的方程 22 (21)10 xkxk 的两个实数根,且 12 ,x x都大于 1 (1) 求实数k的取值范围; (2) 若 1 2 1 2 x x ,求k的值 答案:答案: 1 B2 A3A4A5 9 或361,3pq 7正确 8由 0)2( 0) 1 ( 0

47、)0( f f f 可得 12m 或 43 m 9 2 1 (1)1650 (2) 2 mm 10 3 (1) (2)2 2 kk 11 13 (1)1 12 kk且(2) 不存在 12(1) 3 1 4 kk且;(2)7k 四、一元高次方程的解法四、一元高次方程的解法 含有一个未知数含有一个未知数,且未知数的最高次项的次数大于且未知数的最高次项的次数大于 2 的整式方程叫做一元高次方程的整式方程叫做一元高次方程。 一元高次方程的解法通常用试根法因式分解或换元法达到降次的目的,转换为一元高次方程的解法通常用试根法因式分解或换元法达到降次的目的,转换为 一元一次方程或一元二次方程,从而求出一元高

48、次方程的解。一元一次方程或一元二次方程,从而求出一元高次方程的解。 【例【例 1】解方程(1)x3+3x2-4x=0(2)x4-13x2+36=0 解:(1)原方程可化为x(x-1) (x+4)=0, 4 1 x, 0 2 x, 1 3 x (2)原方程可化为(x2-9) (x2-4)=0; (x+3) (x-3) (x+2) (x-2)=0 , 3 1 x, 2 2 x2 3 x,3 4 x 解方程 (1)x3+5x2-6x=0 练练习习 (2) (x2-3x)2-2(x2-3x)-8=0 答案:答案:(1), 6 1 x, 0 2 x, 1 3 x(2), 1 1 x, 2 2 x, 1

49、3 x4 4 x 五、三元一次方程组的解法举例五、三元一次方程组的解法举例 1)三元一次方程组的概念:三元一次方程组的概念: 三一次方程组中含有三个未知数,每个方程的未知项的次数都是 1,并且一共有三个方程。 注:(1)“未知项”与“未知数”不同。(2)每个方程不一定都含有三个未知数。 它的一般形式是 未知项的系数不全为零,其中每一个方程都可以是三元、二元、一元一次方程,但方程 组中一定要有三个未知数。 2)解三元一次方程组的基本思想方法是:解三元一次方程组的基本思想方法是: 【例【例 1】 解方程组 分析:方程只含 x,z,因此,可以由,消去 y,再得到一个只含 x,z 的方程,与方 程组成

50、一个二元一次方程组 解:3,得 11x10z35(4) 与组成方程组 解这个方程组,得 把 x5,z2 代入,得 253y29, 【例【例 2】 解方程组 分析:分析:三个方程中,z 的系数比较简单,可以考虑用加减法,设法先消 z。 解:+,得 5x+6y=17 +2,得, 5x+9y=23 与组成方程组 解这个方程组,得把 x=1,y=2 代入得: 21+22-z=3, z=3 另解:+-,得 3y=6,y=2 把 y=2 分别代入和,得 解这个方程组,得: 注:此题确定先消去 z 后,就要根据三个方程消两次 z(其中一个方程要用两次), 切忌消一次 z, 再消一次其他未知数, 这样得不到一

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 初高中衔接
版权提示 | 免责声明

1,本文(初高中数学衔接教材7讲word版配答案(交大附中版).doc)为本站会员(四川三人行教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|