结构检验 第四章.ppt

上传人(卖家):金钥匙文档 文档编号:1678339 上传时间:2021-08-22 格式:PPT 页数:160 大小:8.39MB
下载 相关 举报
结构检验 第四章.ppt_第1页
第1页 / 共160页
结构检验 第四章.ppt_第2页
第2页 / 共160页
结构检验 第四章.ppt_第3页
第3页 / 共160页
结构检验 第四章.ppt_第4页
第4页 / 共160页
结构检验 第四章.ppt_第5页
第5页 / 共160页
点击查看更多>>
资源描述

1、第4章 拟动力实验方法 赵均海 教授 4.1 引言引言 结构抗震实验研究的主要目的有两个 方面:一个是对材料或结构的表现进行深 入的了解;另一个是对结构的预期反应进 行验证。 前者在于发展抽象的、概括性的结 构数学模型,主要采用小尺度的单自由度 试件和周期性的加载方法。 后者是将已经存在的数学模型用于 构件或结构,根据实验对预期的响应进行 验证,主要采用地震模拟振动台实验方法 和拟动力实验方法。 拟静力加载实验方法虽然是目前结 构工程中应用最为广泛的实验方法,它可 以最大限度地获得试件的刚度、承载力、 变形和耗能等信息,但是它不能模拟结构 在实际地震作用下的反应;但是对于大型 结构或构件,需要

2、有大型的地震模拟振动 台,这是一项投资很大的设备。 一般的振动台实验只能进行小尺度 的模型结构实验;由于小尺度结构模型的 动力相似律很难满足要求,尤其是在弹塑 性范围内,实验结果往往难以推广到原型 结构中去。 拟动力实验方法吸收了拟静力加载 实验和地震模拟振动台实验两种实验方法 的优点,同时吸收了结构理论分析和计算 的优点,可以模拟大型复杂结构的地震反 应。 拟动力实验方法是1969年日本学者 M.Hakuno等人1首次提出的,是将计算机 与加载作动器联机求解结构动力方程的方 法,目的为了能够真实地模拟地震对结构 的作用。这种方法的关键是结构的恢复力 直接从试件上测得,无需对结构恢复力作 任何

3、理论上的假设。 0 1 0 c avrx mm 当时MHakuno是将模拟计算机与电 液伺服作动器联成一个实验系统 , 如图 4-1所示。 试件为悬臂的钢梁,当系统启动后, 如果输入地震加速度信号 ,则系统的方 程为: (4-1) 图4-1 模拟计算机控制的拟动力实验系统 到1974年,K.Takanashi2采用数字计 算机代替了性能较差的模拟计算机,发展 了用于结构弹塑性地震反应的拟动力实验 系统;其目的在于研究目前描述结构或构 件恢复力特性的数学模型是否正确,进一 步了解具有难以用数学公式表达其恢复力 特性的结构地震反应。 此项实验获得了成功,更为重要的 是它标志着结构抗震实验方法的重大

4、进展。 从此,拟动力实验方法在结构抗震实验研 究中确立了它不可替代的地位。与理论计 算相比,它无需对结构作任何假定就能获 得结构体系的真实地震反应特征。 而与拟静力实验和地震模拟振动台 实验相比,它既有拟静力实验那样经济方 便的特点,又具有振动台实验那样真实模 拟地震作用的功能。 图4-2给出了拟动力实验过程与数值 计算过程之间的比较。 图4-3、图4-4分别给出了两种拟动力 试验装置。 图4-2 数值计算与拟动力实验之间的比较 图4-3 微机控制拟动力疲劳试验机 图4-4 微机控制电液伺服拟动力加载试验系统 4.2 拟动力实验的基本方法拟动力实验的基本方法 4.2.1 基本思想 拟动力实验的

5、基本思想是基于结构动 力方程的数值计算过程。对于一个离散的 多自由度结构系统,其动力方程可写成 (4-2) iiii Ma +Cv +Kd = f 为了能够对方程(4-2)进行数值求 解,考虑线性加速度方法。该方法是假定 在 到 范围内加速度按线性规律变化, 如图4-3所示。 i t 1i t 式(4-2)中M、C和K分别为质量阵、 阻尼阵和刚度阵, 、 和 分别为相对加 速度、速度和位移, 为地震力向量。 i a i v i d i f 图4-5 线性加速度方法的变化关系 经过 、 与 、 及 、 间的关 系代换,增量动力平衡方程可化为: avtd i a i v iiii 2 636t +

6、d= +3+3 + tt2t iiii KMCf MvaCva(4-3) 具体过程是根据数值化的典型地震 加速度记录时程曲线,取某一时刻的地震 加速度值和试验中前一时刻加载后实测的 结构恢复力,用逐步积分振动方程的动力 反应分析方法计算出该时刻结构试体的地 震反应位移,并对结构试体施加此位移, 实现该时刻结构试体的地震反应。 实测此时的结构恢复力,按地震过程 取下一时刻的地震加速度值,进行该时刻 结构试体地震反应位移计算,再将位移施 加到结构试体上。如此逐时刻反复实现计 算位移-施加位移-实测结构恢复力-再计算 位移的循环过程,即模拟了结构实体在地 震中的实际动态反应过程。 采用线性加速度方法

7、进行拟动力实验 所遇到的一个很大困难就是正切刚度Ki的 计算,因为在弹塑性范围内,要保证准确 的地震响应就要保持时间步长选择很小, 而实验加载逼近过程又要求有可靠的正切 刚度估计。 由于位移传感器的精度以及一个位移 加载步长的量值可能非常小,有时将会造 成正切刚度计算结果数值极大的困难(类 似于被0除),这种正切刚度在各个离散点 的陡变往往导致整个实验系统进入不稳定 状态。 4.2.2 中央差分法 为了克服上述困难,H.Tanaka 在拟动 力实验中采用了中央差分方法代替线性加 速度方法。中央差分法采用了如下的速度 和加速度假定,即 11 2 ii i t dd v 11 2 2 iii i

8、t dd +d a (4-4) (4-5) 令 则增量动力平衡方程为 ii Kd = r -1 2 2 22 tt t i+1ii-1ii d= M +CMd +C-M d-r -f 显然 只与恢复力 有关,而与试件 的正切刚度无关,从而避开了线性加速度 方法中的困难。表达式(4-6)中右端都 是已知量,因此中央差分法是一种显式方 法。 图4-4给出了采用中央差分方法的拟 动力实验概图。 i+1 d i r (4-6) 图4-6 采用中央差分法的拟动力实验图 由于加载作动器与试件和反力墙之 间的联接可能存在缝隙,在加载过程中各 传力部分还存在着弹性变形,因此加载作 动器本身的位移传感器的测量值

9、并不等于 试件位移,所以对试件的位移测量采用单 独安装的位移传感器。 加载作动器示意图见图4-7。反力墙 示意图见图4-8、图4-9。位移传感器示意 图见图4-10、图4-11。 图4-7 长安大学结构实验室MTS作动器 图4-8 西安建筑科技大学结构实验室反力墙 图4-9 长安大学结构实验室反力墙 图4-10 位移传感器安装示意图 PCM拉杆式圆筒形位 移传感器 供应数字式位移传感器 图4-11 位移传感器示意图 而拟动力实验所要达到的目标位移是 按试件的位移为准,控制的位移是作动器 的位移,同时每一步的加载位移增量也不 是一次完成的,是通过多次逼近达到目标 值的,这个过程可以通过图4-12

10、来说明。 图4-12 拟动力实验的作动器加载过程 4.3 拟动力实验的适用范围拟动力实验的适用范围 和基本思想和基本思想 4.3.1 拟动力实验的适用范围和基本思想 拟动力实验适用于混凝土结构、钢结 构、砌体结构、组合结构的模型在静力实 验台上,模拟实际地震动力反应的抗震性 能实验。 拟动力实验的基本思想:根据数值 化的典型地震加速度记录时程曲线,取某 一时刻的地震加速度值和实验中前一时刻 加载后实测的结构恢复力,用逐步积分振 动方程的动力反应分析方法计算出该结构 模型的地震反应位移,并对结构模型施加 此位移,实现该时刻结构模型的地震反应; 实测此时的结构恢复力,按地震过程取下 一时刻的地震加

11、速度值,进行该时刻结构 模型地震反应位移计算,再将位移施加到 结构模型上。如此逐时刻反复实现计算位 移-施加位移-实测结构恢复力-再计算位移 的循环过程,即模拟了结构试件在地 震中的实际动态反应。 4.3.2 结构试件的设计和制作 拟动力实验的结构试件应为结构的原 型和缩比例的整体模型和局部模型,为了 实验的真实性,缩比模型或局部模型比例 不宜小于原结构的1/8。结构的局部模型通 常是指整体结构中抗水平力的局部结构, 如框架、排架、剪力墙、砌体墙等。 缩比例整体模型和局部模型的设计,除 应满足材料的相似条件外,还必须满足与原 型结构相似的几何、物理、力学条件。相似 系数可按方程式分析法计算。当

12、缩比例为1/a 时,令c=1/a 则常用相似系数如表1所示。缩 比例后的结构模型各量值与相应相似系数的 乘积,如材料重力密度不足可采用均匀附加 荷重块的方法来补偿。 表表4-1 缩比例结构试件相似系数缩比例结构试件相似系数 结构模型按结构的自然层形成点体系 即相应的计算简图,实验加载点应作用于 各质点处,当缩比例后的模型实际尺寸较 小时,可将相邻自然层合并为一个质点, 但形成一个质点的自然层不宜过多,各质 点应沿模型高度均匀分布。结构实体的约 束条件应与原型结构在实际工作状态下的 约束条件一致。如图4-13所示。 图4-13 模型计算简图 4.3.3 实验系统 拟动力实验系统是由模型、实验台、

13、 反力墙、加载设备和装置、计算机及数据 采集仪器仪表组成。实验台和反力墙应具 有足够大的质量、强度、刚度以及便于安 装的轨道、孔洞。加载设备宜采用闭环自 动控制的机械或液压伺服系统实验机。 图4-14 拟动力实验系统模型、实验 台、反力墙、加载设备和装置实例 图4-15 拟动力实验计算机及数据采 集仪器仪表实例 4.3.4 实验的实施和控制方法 拟动力实验前应根据结构的拟建场地类 型选择出具有代表性的地震加速度时程曲 线,并形成计算机数据文件。将实验计算 分析所需要的初始参数:结构各质点的质 量和高度、自振周期、圆频率、阻尼比等 输入计算机并形成可调用的参数文件。 拟动力实验的基本步骤: (1

14、)根据结构模型的特性即前期实验数 据确定计算初始参数; (2)将初始参数代入动力方程,得到结 构第一步 地震反应位移; (3)由实验系统控制伺服作动器使结构 模型产生计算所得的地震反应位移,同时 测量各质点的恢复力; t (4)根据实测的恢复力修正计算参数, 将这些参数代入动力方程,得到下一步地 震反应位移相应的由实验系统控制伺服作 动器再将该位移施加到结构模型上,按此 步骤逐步迭代循环直至拟动力实验过程全 部结束。 4.3.5 实验数据的处理 不同的地震加速度记录和最大地震加 速度进行的每次实验,均应对实验数据进 行图形处理,主要数据图形应包括: 基底总剪力-顶端水平位移曲线图; 底层剪力-

15、层间水平位移曲线图; 试件各质点的水平位移时程曲线图和 恢复力时程曲线图; 最大加速度时的水平位移图、恢复力 图、剪力图、弯矩图; 抗震设计的时程分析曲线与实验时程 曲线的对比图 (1)实验时的基底总剪力顶端位移和相 应的最大地震加速度,应按试件第一次出 现裂缝时的相应数值确定,并应记录此时 的地震反应时间。 (2)试件屈服极限、破损状态的基底总 剪力、顶端水平位移和最大地震加速度宜 按以下方法确定: 1)采用同一地震加速度记录按不同最大 地震加速度进行的各次实验得到的基底总 剪力-顶端水平位移曲线中最大反应周期 内的各个反应值绘于同一坐标图中,做出 基底总剪力-顶端水平位移包络线。 2)取包

16、络线上出现明显拐点处的数值为 试件屈服基底总剪力、屈服顶端水平位移 和屈服状态地震加速度。 3)取包络线上沿基底总剪力轴顶处的数 值为模型极限基底总剪力和极限剪力状态 的地震加速度。 4)取包络线上沿顶端水平位移轴过极限 基底总剪力点后基底总剪力下降约15%点 处的数值为模型破损基底总剪力及相应的 地震加速度。 4.3.6 拟动力实验方法的应用 20世纪60年代末,日本开始研究拟动力实 验方法,70年代完成了使用两个作动器进行 钢筋混凝土和钢框架结构的实验研究;1981 年美日合作对七层足尺寸结构进行了拟动力 实验研究;我国在拟动力实验方法的研究和 应用大约是在20世纪80年代开始的,进行了

17、大量的实验研究并积累了丰富的经验。 1981年,我国国内进行了第一栋12层 钢筋混凝土框架剪力墙结构1/6比例模型 拟动力实验,目前,结构拟动力实验方法 逐渐成熟起来,各方面都达到了很高的水 平,相信经过国内专家的不懈的努力,抗 震研究工作将有更大的突破。 4.4 等效单自由度体系的拟等效单自由度体系的拟 动动 力实验力实验 4.4.1 为什么采用等效单自由度体系 等效单自由度体系的拟动力实验是对多 自由度结构体系的一种简化实验方法,最 初是由美日合作研究足尺度七层钢筋混凝 土结构实验时提出的3。这种方法主要是基 于如下几个理由: 当被实验结构的自由度很多且刚度很大 时,刚度矩阵中的主元可能达

18、到103104 kN/mm,而实验中位移测量设备的精度仅 为10-210-3mm,因此即使位移精确地控 制在精度范围之内,荷载也将有110kN 的误差;另一个原因是多自由度结构的 内力分布很复杂且随时间呈随机变化, 由于当时作动器的性能所限及有关误差 抑制方法还没有建立,因此对于多自由度 结构的拟动力实验控制算法的建立和实施 都有一定的困难,在这种情况下人们才提 出了采用等效单自由度体系进行拟动力实 验的方法。 4.4.2 方法依据 该方法是基于这样一个事实:刚度大 的结构体系在振动过程中基本处于第一振 型状态,所以等效单自由度体系的实验方 法是以第一振型为主,结构各层的地震荷 载按倒三角形分

19、布(或按第一振型在各质 点处的比例系数分布)。 实验过程是用一个作动器控制试件顶 点的位移,其余各作动器控制其加载力, 并且各个作动器的荷载与顶点作动器的荷 载在整个实验过程中均保持一定的比例, 这样整个实验的加载过程就类似于一个单 自由度体系的实验。 除美国和日本合作研究七层足尺钢筋 混凝土结构采用了这种等效单自由度的实 验方法之外,中国建筑科学研究院也采用 这种方法进行了1:6 比例的12层底层大 空间剪力墙结构的拟动力实验。 虽然等效单自由度拟动力实验方法物 理概念明确,加载过程也比较简单,但是 从尽可能精确地确定由地震动引起的结构 动力反应这一目的出发,拟动力实验还是 应当按多自由度对

20、结构进行分析和实验的。 许多情形下高振型对结构的影响是不 能忽略的,而且结构进入弹塑性阶段以后 其振型假设也不再成立;随着拟动力实验 设备、方法和技术的发展,特别是子结构 拟动力实验方法应用以来,目前国际上已 经较少采用这种等效单自由度方法进行拟 动力实验。 4.5 子结构拟动力实验方法子结构拟动力实验方法 与与 技术技术 4.5.1 子结构技术 结构在地震作用下将产生破坏,但破坏 往往只发生在结构的某些部位或构件上, 其它部分仍处于完好或基本完好状态,所 以将容易破坏的具有复杂非线性特性的这 部分结构进行实验 , 而其余处于线弹性状 的结构部分用计算机进行计算模拟,被实 验的结构部分和计算机

21、模拟部分在一个整 体结构动力方程中得到统一。 这样解决了两方面的困难:一是大 大地降低了试件的尺寸和规模,从而解决 了实验室规模对大型结构实验的限制,同 时也降低了费用;另一方面,对于大型复 杂结构进行拟动力实验,如果试件具有几十 个甚至更多的自由度,那么就要求有大批量 的电液伺服作动器和相关的实验装置,同时 要求整个控制系统具有非常高的控制精度和 稳定性。目前一般的结构实验室不可能具有 这样的规模和水平,解决问题的唯一途径就 是采用子结构技术,降低试件对实验设备的 要求。 用于实验的结构部分称为实验子结 构,其余由计算机模拟的结构部分称为计 算子结构,整体结构由实验子结构和计算 子结构两部分

22、组成,它们共同形成整体结 构的动力方程。 由于实验子结构的恢复力呈复杂的非 线性特征,理论上难以处理,因此直接由 实验获得;而计算子结构处于弹性范围, 恢复力呈简单的线性特征,因此由计算机 进行模拟。如图4-16所示。 足尺三层框支配筋砌块短肢砌体剪力 墙子结构试验如图4-17所示。 图4-16 三层结构模型及实验子结构 图4-17 足尺三层框支配筋砌块短肢砌体剪力墙子结 构试验 现以图4-7所示的三层结构模型为例, 说明如何使用子结构拟动力实验方法与技 术,实验子结构为第一层,上部两层为计 算子结构,实验子结构和计算子结构组成 了整体结构,由图4-7可以写出三层结构 的动力方程 拟静力加载实

23、验方法虽然是目前结构工程 (4-7) 将上式改写成矩阵形式,上式成为 MaCv +Kdrfi iiii (4-8) 上式中刚度矩阵 只包含计算子结构 的分量。恢复力向量 中只包含实验子结 构的分量,并且直接由试件上测得。 考虑采用中央差分法,将 和 11 2 ii t i dd v 11 2 2 iii i t ddd a 代入上式得 11 222 11211 22 iiiii ttttt MC dfrKM dMC d (4-9) 上式中位移 也可以分成两部分,一 部分是与实验子结构相对应的实验位移 ,另一部分是与计算子结构对应的计算位 移 ,而 。 实验子结构同前面的拟动力实验, 且位移是

24、,而 由计算确定。具体实验 算法流程图示于图4-18。 1i I d 11 1 ii EI i ddd 1i E d 1i I d 图4-18 使用中央差分法的子结构拟动力实验算 法流程图 4.5.2 组合数值积分方法 子结构方法在拟动力实验中的引入为 采用稳定性更好的隐式数值积分方法提供 了机会,因为整个结构被分成了实验子结 构和计算子结构两部分,在实验子结构部 分采用传统的显式数值积分方法,而在计 算子结构部分就有理由采用无条件稳定的 隐式数值积分方法,从而形成了组合的数 值积分方法4。 最易被考虑到的组合数值积分方法是 中央差分法(CDM)和Newmark-法的组 合。将整体结构动力方程

25、按实验子结构和 计算子结构进行分块,则有 1111 1111 avdfM0CCKK = avdf0MCCKK EEEEEEEIEEI iiii IIIIIIEIIEI iiii (4-10) 式中上角标 和 分别代表实验子结构和计 算子结构。展开后可写成: 111111 M aC vC vK dK df EEEEEIIEEIEIE iiiiii 111111 M aC vC vK dKdf IIIIIEEIIEIEI iiiiii (4-11) (4-12) 式中 即为实验子结构的恢复力 。假设第i 步的计算已经完成,需要进行第i+1步的 计算,根据显式Newmark法(与CDA法完 全等价)

26、,实验子结构的位移 和速度 由式 1 d E i 1 v E i 2 1 2 EEEE iiii t t ddva 11 2 EEEE iiii t vvaa (4-13) (4-14) 计算,而计算子结构的位移 和速度 由式 1 d I i1 v E i 2 11 4 IIIII iiiii t t ddvaa 11 2 IIII iiii t vvaa (4-15) (4-16) 计算。从上式知实验子结构的位移 是显 式的,而计算子结构的位移 是隐式的, 上述这种方法称为CD-Newmark方法。 1 E i d 1 I i d 直接从Newmark-法出发也可以导出 一种隐-显式组合的数

27、值积分方法,首先 将整体结构动力方程写成形式为 11 1111 MaC vC vK df IEI I ii iiii r 式中 IE CCC IE KKK (4-17) 根据Newmark-法的位移和速度表达式, 经过进一步分解重组后可以得到表达式 2 11-2 2 II i iii t t ddva 11i ii t vva (4-18) (4-19) 2 1 11 i ii t dda 1 11 i ii t vva(4-21) (4-20) 因为 和 是预测位移和预测速度 ,而 和 是校正位移和速度,所以这 种方法称为预测-校正Newmark(PC-New- mark)法。这种预测-校正

28、Newmark法的 实验流程图见图4-19。 1id 1iv 1i d 1i v 图4-19 预测-矫正Newmark法拟动力算法流程图 4.6 子结构拟动力实验方法应用子结构拟动力实验方法应用 4.6.1 三层剪切型框架模型的子结构拟动力 实验5 本实验的目的是为了研究和比较邱法维 提出的一种采用钢管混凝土的耗能-隔震柔 性底层结构体系与传统钢筋混凝土结构体 系的地震响应,分析两种结构体系在地震 作用下的能量耗散与损伤分布情况。 实验的整体结构为三层框架,实验子 结构均选为结构的底层,上部两层结构为 计算子结构,由计算机模拟,并假定处于 弹性阶段。实验采用PC-Newmark数值积 分方法。

29、试件为1:4的模型结构,共制作 了四个试件,其中试件1为传统的钢筋混 凝土结构(PDl),另三个试件相同,均为 底层钢管混凝土柱的耗能-隔震柔性底层 结构(PD2、PD3和PD4),而上部两层结构 与试件1(PDl)完全相同。钢管混凝土柱的 尺寸为,401.5750(外径壁厚高度),钢 材为普通A3钢,填充混凝土采用了微粒 混凝土,配合比为:水:水泥:粗骨料: 细骨料1: 0.52: 1.25: 2.5,水泥为普通 425号硅酸盐水泥,细骨料是最大粒径小 于25mm的砂料,粗骨料是最大粒径在 2.55.0mm之间的砂料。 钢筋混凝土框架模型制造采用了相同的微 粒混凝土,柱截面尺寸为60mm60

30、mm, 受力钢筋采用了4B4的级螺纹钢筋,箍 筋采用16#铁丝,箍筋间距为25mm。两种 试件的尺寸和配筋示于图4-20。 图4-20 钢筋混凝土框架试件和钢管混凝上框架 试件 实 验 采 用 了 两 种 地 震 波 , E L - Centro(S-N)波和Taft(S-N)波输入,加速度 波形如图4-21所示。 图4-21 实验中输入的两种地震加速度波 模型PDl和PD2输入EL-Centro波,最 大峰值加速度调整为400Gal。根据模型相 似比1: 4,地震波在时间域上进行了压缩, 时间步长为0.01s,持时10s(原地震波的时 间步长为0.02s,持时为20s)。 模型PD3输入了T

31、aft波,峰值加速度 调整为250Gal,其它内容与模型PDl和 PD2相同;模型PD4采用的是无条件稳定 隐式-方法的数值积分方法。 实验加载控制装置示于图4-22,由于 模型较小,选用的加载作动器的最大出力 为250kN,行程为250mm,试件的位 移 测 量 采 用 了 机 电 百 分 表 , 行 程 为 15mm,分辨率是0.01mm。 图4-22 实验加载控制装置简图 图4-23给出了模型PDl的拟动力实验 结果和理论计算结果的比较,其中理论计 算采用了三线性恢复力模型 模型PD2的实验结果和理论计算结果 示于图4-24,其理论计算采用的恢复力模 型参数同样是由拟静力加载实验确定的。

32、 图4-23 模型PDl的拟动力实验结果和理论计算 结果(EL-Centro, =400Gal) 0 x 图4-24 模型PD2的拟动力实验结果和理论计算 结果(EL-Centro, =400Gal) 0 x 从图4-23和图4-24可以看到,理论计 算结果与实验结果比较吻合,特别是最大 值吻合很好,说明理论计算模型和恢复力 模型的选择和参数确定是合理的;通过比 较两种结构模型的地震反应可以看到,模 型PD2的加速度反应明显小于模型PDl的 加速度反应,说明模型PD2代表的结构体 系具有显著的减震效果。 从累积滞回耗能的实验结果来看,情况也 是如此,图4-25为模型PD1和PD2的地震 反应滞

33、回曲线,图4-26为两者的累积滞回 耗能,图中虚线代表模型PD1,实线代表 模型PD2结果。 图4-25 模型PD1和PD2的地震反应滞回曲线 (EL-Centro, =400Gel) 0 x 图4-26 模型PDl和PD2的累积滞回耗能(EL- Centro, =400Gal) 0 x 从图4-26中可见,模型PDl和PD2在EL- Centro地震波作用下具有几乎相等的累积 滞回耗能,但是钢管混凝土柱的极限耗能 能力要比钢筋混凝土柱的极限耗能能力大 很多,相比之下钢筋混凝土柱的地震损伤 就比钢管混凝土柱严重,从实验后试件的 宏观表现也证实了这一点。 模型PD3的实验结果如图4-27所示,用

34、它 也进一步检验了耗能-隔震柔性底层结构 在不同地震波下的反应和损伤情况。 图4-27 模型PD3的实验结果和理论计算结果 (Taft, =250Gal) 0 x 4.6.2 六层钢筋混凝土模型框架的子结构 拟动力实验6 本项实验是邱法维在土木工程防灾国 家重点实验室基金的资助下完成的,目的 是研究这种框架结构在地震作用下的非线 性反应,同时与振动台实验模型的结果进 行分析比较,研究建筑结构实验的模型动 力相似比的关系。试件采用1: 2模型,实 验子结构为结构的第一层,上部五层为计 算子结构,试件的尺寸及配筋如图4-28所 示。 图4-28 钢筋混凝土框架的尺寸和配筋图(单位:mm) 结构的动

35、力计算模型可以采用杆系模 型,但由于实验条件所限,无法满足结点 转动自由度的实验要求。通过数值计算分 析和比较,对于该框架结构可以采用剪切 型模型,数值积分方法采用PC-Newmark 法。根据相似比的要求,结构的各层质量 为7.5t,层间刚度可以根据现有的各种方 法计算,但为准确起见,实验中计算子结 构的各层层间刚度采用了底层实验子结构 的实测值,实测结果为97kN/mm。实验中 输入了EL-Centro(S-N)地震波,时间间隔 为0.014s,持时为14s(地震波根据相似比 进行了压缩,原波的时间间隔是0.02s, 持时20s);为了模拟柱子的轴力,在试件 的两个柱端采用稳压千斤顶分别加

36、上 220kN的轴力,整个实验加载装置简图示 于图4-29中。 图4-29 实验加裁装置简图 实验中采用的电液伺服加载作动器最 大出力为600kN,最大位移为250mm; 试件位移测量的传感器行程为100mm, 分辨率为0.0lmm;试件的钢筋上预埋了一 系列应变片,用以测量在地震作用过程中 钢筋上的应力变化;控制计算机为PC-486 微机,A/D、D/A转换器为12位的。 实验按地震波的输入进行了多种工 况,首先从地震波峰值加速度为0.05g开 始,用以检验实验方法、控制系统、仪器 仪表的工作状况,然后将地震波峰值加速 度分别调整为0.1g、0.2g、0.4g、0.6g和 0.7g进行输入。

37、实验中进一步考虑了结构 损伤引起的结构阻尼特性的变化,当峰值 加速度超过0.2g之后,结构的刚度不断退 化,据此将结构的阻尼比作相应的调整, 以便理论计算更符合实际情况;地震波峰 值加速度在0.2g以内取 = =0.05,0.4g时 取0.07,0.6g时取0.09,0.7g时取0.10。理 论计算采用的数值计算方法与实验采用的 PC-Newmark法相同,这样可以避免算法 不同而带来的计算误差。层间恢复力模型 1 2 采用了三线性模型,每种工况下的理论计 算是采用实验结果对恢复力模型中的参数 加以确定的,这样使理论计算能够比较准 确地反映实际情况。图4-304-35给出了 相应的实验结果和理

38、论分析结果的比较。 图4-30 0.1g输入时16层位移反应和底层滞回曲 线 图4-31 0.1g输入时底层位移和加速度的实验与 计算结果对比 图4-32 0.4g输入时16层位移反应和底层滞回曲线 图4-33 0.4g输入时底层位移和加速度的实验与 计算结果对比 图4-34 0.6g输入时16层位移反应和底层滞回曲线 图4-35 0.6g输入时底层位移和加速度的实验与 计算结果对比 从图4-30至图4-35可以看出,随着输 入地震波峰值的增加,结构的层间变形不 断增大,从滞回曲线上来看结构的层间刚 度不断退化;这一变化从图4-36和图4-37 的位移反应频谱图上也可以清楚地看到, 随着结构刚

39、度的不断退化,结构的各阶频 率也相应降低,几种工况下结构的具体频 率变化情况列于表4-2。 图4-36 0.1g和0.2g输入时的位移反应频谱 图4-37 0.4g和0.6g输入时的位移反应频谱 表表4-2 各种工况下结构反应的频率各种工况下结构反应的频率(Hz) 从表4-2结果可见,输入0.1g和0.2g地 震波时,结构的各阶频率基本没有变化, 说明结构基本完好,这一点与结构地震后 的物理特征也是一致的;在0.2g地震波输 入下,结构只有梁端出现微小裂缝。当 0.4g输入时,梁端和柱端均出现一些裂缝 ,而且原有梁端裂缝进一步加大,显然结 构刚度降低造成了频率的下降。当输入地 震波加大至0.6

40、g之后,柱端裂缝已经贯穿 整个截面,并出现局部混凝土剥落,其频 率降低比较明显。 从上述三个应用实例可以看出,拟动 力实验方法是目前实验室内模拟大型结构 地震反应的唯一手段,它可以比较精确地 再现结构的地震反应;子结构拟动力实验 方法是一种更加有效地解决大型结构地震 模拟的实验方法,只要合理地选择实验子 结构并且比较真实地模拟边界条件,那么 就可以用部分结构进行拟动力实验,而且 实验结果能够反映整体结构的地震反应。 4.7 多维拟动力实验方法多维拟动力实验方法 4.7.1 多维地震问题 就象多维拟静力加载实验方法一样,多 维拟动力实验方法的重要意义是不言而喻的 。首先,实际的地震动是多维的,不

41、仅存在 平动分量,而且也存在转动分量;其次,大 量的震害调查和实验结果也表明,结构在多 维地震作用下的破坏比一维地震作用的破坏 更严重,受力状态也更复杂。到目前为止还 没有很好地建立起多维地震动下结构非线 性反应的动力分析方法以及恢复力模型。 即使在双水平向地震作用下,一个方向的 地震作用也直接影响到结构另一个方向的 变形和受力特征。因此,即使在结构完全 对称情况下,双向地震作用也可能造成结 构的扭转振动,这种复杂的受力特征加速 了结构的变形,并会进一步导致结构的失 稳和倒塌。也正是由于这些复杂问题的存 在,实验这种作为人们展示物理规律的最 直接手段才显得更为重要。 与地震模拟振动台相比,多维

42、拟动力 实验设备的地震模拟能力还有一定差距, 目前的地震模拟振动台已经具有可以进行 空间六个自由度方向的地震模拟能力,而 拟动力实验只达到了水平双向的能力,国 内外开发和进行的多维拟动力实验目前 都是限于水平双向的。当然,由于拟动力 实验可以进行大型结构地震模拟实验的优 势仍是其它方法无法比拟的,这也是它获 得发展的重要原因。 4.7.2 实验方法与控制原理 双向拟动力实验方法与一维拟动力实验 方法在原理上是类似的,但由于是双向加 载,所以存在着两个方向的加载作动器的 同步加载以及协调、稳定等问题,因此在 控制方法上也较为复杂一些。 设多质点结构体系在x和y两个水平方向受 到地震动 和 的作用

43、,结构的动力方程可 以写成 0ixixii xxx MCFM 0iyixii yyy M CFM (4-22) (4-23) 采用比较简单的中央差分法,在x和y方向 分别有 11 2 2 iii i t xxx x 11 2 ii i t xx x 11 2 2 iii i t yyy y 11 2 ii i t yy y (4-24) (4-25) (4-26) (4-27) 将式(4-24)(4-27)分别代入式(4-22)和(4-23), 整理可得 1 2 110 2() 22 ixixixii tt tx xMCMxCM xF M 1 2 110 2() 22 iyixiyii tt

44、ty yMCMyCM yF M (4-28) (4-29) 根据式(4-28)和(4-29)可以建立双向拟动力 实验的控制流程图(图4-38所示)。 图4-38 双向拟动力实验流程框图 双向拟动力实验由于存在两个方向的 互相耦合问题,所以也存在类似第二章中 讨论的多维拟静力加载实验的修正问题; 由于位移直接从试件测量得到,所以位移 只是单一方向的分量;而恢复力由加载作 动器上的力传感器测得,存在着另一方向 的耦合分量,那么可以用第二章的公式进 行修正。 一般情况下由于加载位移比较小, 恢复力可以不作修正直接使用。另外, 子结构技术在双向拟动力实验中仍可以 应用,其方法与前述子结构拟动力实验 的

45、应用是完全相同的。 4.7.3 考虑扭转情况的拟动力实验方法 结构在地震作用下不仅发生平动,而且 还会发生转动。引起结构扭转振动的主要原 因有两个:一是地面运动本身就存在转动分 量;另一个原因是结构自身的质量中心与刚 度中心不重合,存在偏心。通常情况下由于 扭转振动的存在,结构的地震破坏可能加重 。这里仅仅考虑结构存在偏心,输入的地震 波仍然是两个水平方向的。 考虑扭转情况的拟动力实验比双向拟 动力实验要复杂一些,设多层结构的楼层 刚度很大可视为刚片,则每一层楼板具有 两个平动和一个转动共计三个自由度,整 体结构的动力方程可以写成 0ixixii xxx MCFM 0iyixii yyy M

46、CFM iii JCK0 (4-30) (4-31) (4-32) 中央差分法对于扭转情况仍然可以应用, 为了方便起见,下面以图4-39所示的单层 框架结构为例说明具体实验过程。 图图4-39 多维拟动力实验的试件变形多维拟动力实验的试件变形 根据图4-29中试件变形的几何关系, 质心位移和转角与加载点的位移之间的关 系为 12 2 xx x dd d 34 2 yy y dd d 12xx y dd L 34yy x dd L (4-33) (4-34) (4-35) (4-36) 试件在X和Y两个水平方向受到的力和扭 矩为 12xxx FFF 34yyy FFF 1234xxyyyx MF

47、FLFFL (4-37) (4-38) (4-39) 计算中控制的变量是质心位移 、 和转角 ,而实际加载过程控制的是位移 , 和 。实验过程是由方程(4-30)(4-32) 计算出结构的质心位移 、 和转角 ,然 后由式(4-33)(4-36)求出位移 , , 和 ,接着在试件上实现位移 , , 和 ,最后通过式(4-37)(4-39)可以得到结 构的恢复力和扭矩。 x d y d 1x d 2x d 3y d 4y d x d y d 1x d 2x d 3y d 4y d 1x d 2x d 3y d 4y d 4.7.4 应用实例 高梨晃一教授4042等人对H型钢结构柱子 进行了双向拟

48、动力实验,试件为剪切型的 单层结构模型,如图4-40所示。假设四个 H型钢柱完全一样,且层间没有扭转,则 可以用单根柱子作为实验模型进行拟动力 实验,如图4-41所示。 图4-40 单层H型钢结构模型 图4- 41 实验模型 试件尺寸为H-707066,型钢高度 H=89cm,两个方向的长细比分别为强轴 方向32、弱轴方向53。实验中输入了两种 地震波:1968年HACHINOHE地震波的东 西(EW)和南北(NS)分量,1940年EL- Centro地震波的东西(EW)和南北(NS)分量 ,积分时间步长为0.01s。试件的有关参 数和输入地震波的参数列于表4-3。 表表4-3 试件参数和输人

49、地震波参数试件参数和输人地震波参数 这里给出了试件DBC-C-3的实验结果,输 入的地震波是EL-Centro波。试件DBC-C- 3在两个方向的时程曲线和滞回曲线的实 验结果示于图4-42和4-43,图中虚线为按 抛物线模型进行理论计算得到的结果。时 程图形中同时给出了按两种应力-应变模 型计算的计算结果。 图4-42 两个方向的位移响应时程曲线(EL-Centro波) 图4-43 两个方向的恢复力与位移滞回曲线 (EL-Centro波) 通过双向拟动力实验,可以真实准确 地揭示H型钢柱在双向地震输入下的力学 性能,尤其是强轴变化对弱轴的影响,这 是单方向实验结果所无法揭示的内容;同 时,通

50、过实验可以验证不同计算模型和方 向对双向地震反应分析精度的影响,对模 型进一步作出合理的修改,为理论分析提 供客观检验标准。当然,由于双向拟动力 实验要从同一平面的两个方向进行加载, 所以加载装置及有关设施的安装调试也就 更加困难,这也是目前双向拟动力实验数 量很少的一个主要因素。 M.Seki和T.Okadars10也进行过双向 拟动力实验,试件为具有钢筋混凝土柱和 剪力墙的空间框架结构,实验工况和试件 尺寸如图4-44所示。实验输入的地震波是 HACHI-NOHE地震波的东西(EW)和南北 (SN)分量。实验结果表明,与单向加载相 比,双向加载的响应位移显著增大,而且 结构主要抗侧力构件即

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(结构检验 第四章.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|