微积分下册课件:6-9.PPT

上传人(卖家):罗嗣辉 文档编号:2039711 上传时间:2022-01-19 格式:PPT 页数:16 大小:1,015KB
下载 相关 举报
微积分下册课件:6-9.PPT_第1页
第1页 / 共16页
微积分下册课件:6-9.PPT_第2页
第2页 / 共16页
微积分下册课件:6-9.PPT_第3页
第3页 / 共16页
微积分下册课件:6-9.PPT_第4页
第4页 / 共16页
微积分下册课件:6-9.PPT_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、一、定义一、定义)(1)1(1)(xfyPyPyPynnnn n阶常系数线性微分方程的标准形式阶常系数线性微分方程的标准形式0 qyypy二阶常系数齐次线性方程的标准形式二阶常系数齐次线性方程的标准形式)(xfqyypy 二阶常系数非齐次线性方程的标准形式二阶常系数非齐次线性方程的标准形式6.9 6.9 二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程二、二阶常系数齐次线性方程解法二、二阶常系数齐次线性方程解法-特征方程法特征方程法,rxey 设设将其代入上方程将其代入上方程, 得得0)(2 rxeqprr, 0 rxe故有故有02 qprr特征方程特征方程,2422,1qppr 特征根特

2、征根0 qyypy(1) (1) 有两个不相等的实根有两个不相等的实根,2421qppr ,2422qppr ,11xrey ,22xrey 两个线性无关的特解两个线性无关的特解得齐次方程的通解为得齐次方程的通解为;2121xrxreCeCy )0( 特征根为特征根为(2) (2) 有两个相等的实根有两个相等的实根,11xrey ,221prr )0( 一特解为一特解为得齐次方程的通解为得齐次方程的通解为;)(121xrexCCy 代入原方程并化简,代入原方程并化简,将将222yyy , 0)()2(1211 uqprrupru, 0 u知知,)(xxu 取取,12xrxey 则则,)(12x

3、rexuy 设设另另一一特特解解为为特征根为特征根为 (3) (3)有一对共轭复根有一对共轭复根,1 ir ,2 ir ,)(1xiey ,)(2xiey )0( 重新组合重新组合)(21211yyy ,cos xex )(21212yyiy ,sin xex 得齐次方程的通解为得齐次方程的通解为).sincos(21xCxCeyx 特征根为特征根为定义定义 由常系数齐次线性方程的特征方程的根由常系数齐次线性方程的特征方程的根确定其通解的方法称为确定其通解的方法称为特征方程法特征方程法. .044的通解的通解求方程求方程 yyy解解特征方程为特征方程为,0442 rr解得解得,221 rr故所

4、求通解为故所求通解为.)(221xexCCy 例例1 1.052的通解的通解求方程求方程 yyy解解特征方程为特征方程为,0522 rr解得解得,2121ir ,故所求通解为故所求通解为).2sin2cos(21xCxCeyx 例例2 2三、三、n阶常系数齐次线性方程解法阶常系数齐次线性方程解法01)1(1)( yPyPyPynnnn特征方程为特征方程为0111 nnnnPrPrPr特征方程的根特征方程的根通解中的对应项通解中的对应项rk重重根根若若是是rxkkexCxCC)(1110 ik 复复根根重重共共轭轭若若是是xkkkkexxDxDDxxCxCC sin)(cos)(11101110

5、注意注意n次代数方程有次代数方程有n个根个根, 而特征方程的每一个而特征方程的每一个根都对应着通解中的一项根都对应着通解中的一项, 且每一项各一个且每一项各一个任意常数任意常数.nnyCyCyCy 2211特征根为特征根为, 154321irrirrr 故所求通解为故所求通解为.sin)(cos)(54321xxCCxxCCeCyx 解解, 01222345 rrrrr特征方程为特征方程为, 0)1)(1(22 rr.022)3()4()5(的通解的通解求方程求方程 yyyyyy例例3 3四、小结四、小结二阶常系数齐次微分方程求通解的一般步骤二阶常系数齐次微分方程求通解的一般步骤:(1)写出相

6、应的特征方程)写出相应的特征方程;(2)求出特征根)求出特征根;(3)根据特征根的不同情况)根据特征根的不同情况,得到相应的通解得到相应的通解. (见下表见下表)02 qprr0 qyypy 特征根的情况特征根的情况 通解的表达式通解的表达式实根实根21rr 实根实根21rr 复根复根 ir 2, 1xrxreCeCy2121 xrexCCy2)(21 )sincos(21xCxCeyx 思考题思考题求微分方程求微分方程 的通解的通解. yyyyyln22 思考题解答思考题解答, 0 y ,ln22yyyyy ,ln yyy ,lnyyyx ,lnlnyy 令令yzln 则则, 0 zz特征根

7、特征根1 通解通解xxeCeCz 21.ln21xxeCeCy 一一、 求求下下列列微微分分方方程程的的通通解解: : 1 1、04 yy; 2 2、02520422 xdtdxdtxd; 3 3、0136 yyy; 4 4、0365)4( yyy. .二、二、 下列微分方程满足所给初始条件的特解下列微分方程满足所给初始条件的特解: : 1 1、0,2,04400 xxyyyyy; 2 2、3,0,013400 xxyyyyy. .三、三、 求作一个二 阶常系数 齐次线性微分方程求作一个二 阶常系数 齐次线性微分方程, ,使使3,2,1 xxxeee都是它的解都是它的解 . .四、四、 设圆柱

8、形浮筒设圆柱形浮筒, ,直径为直径为m5 . 0, ,铅直放在水中铅直放在水中, ,当稍当稍向下压后突 然放开向下压后突 然放开, ,浮筒 在水中上 下振动的浮筒 在水中上 下振动的s2周期为周期为, ,求浮筒的质量求浮筒的质量 . .练练 习习 题题练习题答案练习题答案一、一、1 1、xeCCy421 ; 2 2、tetCCx2521)( ; 3 3、)2sin2cos(213xCxCeyx ; 4 4、xCxCeCeCyxx3sin3cos432221 . .二、二、1 1、)2(2xeyx ; 2 2、xeyx3sin2 . .三、三、0 yy. (. (提示提示: :为两个为两个xe, 1线性无关的解线性无关的解) )四、四、195 Mkg.kg.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(微积分下册课件:6-9.PPT)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|