1、( )() x nx nrNrN周期序列:为任意整数 为周期000 ( )() ( )( )aajktakx tx tkTTx tA k e连续周期函数:为周期0002 /jktTke 基频:次谐波分量:0 ( )( )jknkNx nA k e为周期的周期序列:002 /jknNke基频:次谐波分量:周期序列的DFS正变换和反变换:21100( ) ( )( )( )NNjnknkNNnnX kDFS x nx n ex n W2110011( )( )( )( )NNjnknkNNkkx nIDFS X kX k eX k WNN2jNNWe其中:( )6x nDFS例:已知序列是周期为
2、的周期序列, 如图所示,试求其的系数。10( )( )NnkNnX kx n W解:根据定义求解 560( )nknx n W22266222345666141210 8610jkjkjkjkjkeeeee(0)60(1)93 3(2)33(3)0(4)33(5)93 3XXjXjXXjXj4( )( ), ( )8( )( )x nR nx nNx nx nDFS例:已知序列将以为周期 进行周期延拓成,求的。解法一:数值解10( )( )NnkNnX kx n W780( )nknx n W222238881jkjkjkeee 380nknW(0)4(1)121(2)0(3)121(4)0(
3、5)121(6)0(7)121XXjXXjXXjXXj 210( )NjknNnX kDFS x nx n e解法二:公式解 2780jknnx n e340jknne222888jkjkjkjkjkjkeeeeee44411jkjkee38sin2sin8jkkek X kz与 变换的关系: 010 x nnNx nn令其它 210jkkNNNnkNz WenX kx n WX z 可看作是对 的一个周期 做 变换然后将 变换在 平面单位圆上按等间隔角 抽样得到 X k x n x nzz2Nz10NnnnnXzxnzxnz 对x(n)作Z变换其中, 为任意常数, a b11( )( )X
4、kDFS x n22( )( )XkDFS x n若1212( )( )( )( )DFS ax nbx naX kbXk则2 ()( )( )jmkmkNNDFS x nmWX keX k10 ()()NnkNnDFS x nmx nm W证:1()( )Nmk i mNi mx i W inm令10( )( )NmkkimkNNNiWx i WWX k( )()nlNDFS W x nX kl10( )( )NlnlnnkNNNnDFS W x nW x n W证:1()0( )Nl k nNnx n W()X kl1210( )()Nmx m x nm12( )( )( )Y kX kX
5、k若1120( ) ( )( )()Nmy nIDFS Y kx m x nm则12( )( )( )y nIDFS X kXk证: 11201( )( )NknNkX k Xk WN1112001( )( )NNmkknNNkmx m WXk WN 11()12001( )( )NNn m kNmkx mXk WN1120( )()Nmx m x nm142512( )( ) ( )(1)( )6( )( )x nR nx nnR nx nx n例:已知序列,分别将序列以周期为 周期延拓成周期序列和,求两个周期序列的周期卷积和。1120( )( )()Nmy nx m x nm解: 5120( )()mx m x nmn m1/x n m2xm21xm22xm23xm24xm25xm2/xn m( )y n11201( )()NlX l XklN12101( )()NlXl X klN12( )( )( )y nx n x n若10( ) ( )( )NnkNnY kDFS y ny n W则