1、小升初奥数题及答案五篇小升初奥数题及答案五篇1.小升初奥数题及答案1、用一只水桶装水,把水加到原来的 2 倍,连桶重 10千克,如果把水加到原来的 5 倍,连桶重 22 千克。桶里原有水多少千克?想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。解:(22-10)(5-2)=123=4(千克)答:桶里原有水 4 千克。2、 小红和小华共有故事书 36 本。 如果小红给小华 5 本,两人故事书的本数就相等,原来小红和小华各有多少本?想:从“小红给小华 5 本,两人故事书的本数就相等”这一条件,可知小红比小华多(52)本书,用共有的 36 本去掉小红
2、比小华多的本数,剩下的本数正好是小华本数的 2倍。解:小华有书的本数:(36-52)2=13(本)小红有书的本数:13+52=23(本)答:原来小红有 23 本,小华有 13 本。2.小升初奥数题及答案1、已知一张桌子的价钱是一把椅子的 10 倍,又知一张桌子比一把椅子多 288 元,一张桌子和一把椅子各多少元?想: 由已知条件可知, 一张桌子比一把椅子多的 288 元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。解:一把椅子的价钱:288(10-1)=32(元)一张桌子的价钱:3210=320(元)答:一张桌子 320 元,一把椅子
3、 32 元。2、3 箱苹果重 45 千克。一箱梨比一箱苹果多 5 千克,3箱梨重多少千克?想:可先求出 3 箱梨比 3 箱苹果多的重量,再加上 3 箱苹果的重量,就是 3 箱梨的重量。解:45+53=45+15=60(千克)答:3 箱梨重 60 千克。3.小升初奥数题及答案1、甲、乙二人同时从相距 18 千米的两地相对而行,甲每小时行走 5 千米,乙每小时走 4 千米。如果甲带了一只狗与甲同时出发,狗以每小时 8 千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千
4、米。解:18(5+4)=2(小时)82=16(千米)答:狗跑了 16 千米。2、有红、黄、白三种颜色的球,红球和黄球一共有 21个,黄球和白球一共有 20 个,红球和白球一共有 19 个。三种球各有多少个?想:由条件知,(21+20+19)表示三种球总个数的 2 倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。解:总个数:(21+20+19)2=30(个)白球:30-21=9(个)红球:30-20=10(个)黄球:30-19=11(个)答:白球有 9 个,红球有 10 个,黄球有 11 个。4.小升初奥数题及答案1、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走
5、 4.5 千米,第二小组每小时行 3.5 千米。两组同时出发 1 小时后, 第一小组停下来参观一个果园, 用了 1 小时,再去追第二小组。多长时间能追上第二小组?想:第一小组停下来参观果园时间,第二小组多行了3.5-(4.5-3.5)千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(4.5-3.5)千米,由此便可求出追赶的时间。解:第一组追赶第二组的路程:3.5-(4.5-3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5(4.5-3.5)=2.51=2.5(小时)答:第一组 2.5 小时能追上第二小组。2、有甲乙两个仓库,每个仓库平均储存粮食 32.5 吨。甲仓的
6、存粮吨数比乙仓的 4 倍少 5 吨,甲、乙两仓各储存粮食多少吨?想:根据甲仓的存粮吨数比乙仓的 4 倍少 5 吨,可知甲仓的存粮如果增加 5 吨,它的存粮吨数就是乙仓的 4 倍,那样总存粮数也要增加 5 吨。若把乙仓存粮吨数看作 1 倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。解:乙仓存粮:(32.52+5)(4+1)=(65+5)5=705=14(吨)甲仓存粮:144-5=56-5=51(吨)答:甲仓存粮 51 吨,乙仓存粮 14 吨。5.小升初奥数题及答案1、甲乙两个水管单独开,注满一池水,分别需要 20 小时,16 小时。丙水管单独开,排一池水要 10 小时,若水池没
7、水,同时打开甲乙两水管,5 小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/169/80 表示甲乙的工作效率9/80545/80 表示 5 小时后进水量1-45/8035/80 表示还要的进水量35/80(9/80-1/10)35 表示还要 35 小时注满答:5 小时后还要 35 小时就能将水池注满。2、修一条水渠,单独修,甲队需要 20 天完成,乙队需要 30 天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划 16 天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为 1/20,乙的工效为 1/30,甲乙的合作工效为 1/20*4/5+1/30*9/107/100,可知甲乙合作工效甲的工效乙的工效。又因为,要求“两队合作的天数尽可能少” ,所以应该让做的快的甲多做, 16 天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少” 。设合作时间为 x 天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x1x10答:甲乙最短合作 10 天