《算法设计与分析》全册配套完整教学课件1.pptx

上传人(卖家):罗嗣辉 文档编号:2152243 上传时间:2022-03-07 格式:PPTX 页数:405 大小:1.92MB
下载 相关 举报
《算法设计与分析》全册配套完整教学课件1.pptx_第1页
第1页 / 共405页
《算法设计与分析》全册配套完整教学课件1.pptx_第2页
第2页 / 共405页
《算法设计与分析》全册配套完整教学课件1.pptx_第3页
第3页 / 共405页
《算法设计与分析》全册配套完整教学课件1.pptx_第4页
第4页 / 共405页
《算法设计与分析》全册配套完整教学课件1.pptx_第5页
第5页 / 共405页
点击查看更多>>
资源描述

1、算法设计与分析全册算法设计与分析全册配套完整教学课件配套完整教学课件12022-3-4算法设计与分析课件1算法设计与分析2022-3-4算法设计与分析课件3第1章 算法引论n1.1 算法与程序n1.2 表达算法的抽象机制n1.3 描述算法n1.4 算法复杂性分析本章主要知识点:2022-3-4算法设计与分析课件41.1 算法与程序n输 入:有零个或多个外部量作为算法的输入。 n输 出:算法产生至少一个量作为输出。 n确定性:组成算法的每条指令清晰、无歧义。 n有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。算法:算法:是满足下述性质的指令序列。2022-3-4算法设计与分析课件

2、51.1 算法与程序程序:程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)即有限性。 l 例如操作系统,是一个在无限循环中执行的程序,因而不是一个算法。l 操作系统的各种任务可看成是单独的问题,每一个问题由操作系统中的一个子程序通过特定的算法来实现。该子程序得到输出结果后便终止。2022-3-4算法设计与分析课件61.1 算法与程序n算法的研究可以分成四个不同的领域:算法的研究可以分成四个不同的领域:1)怎样设计算法: 算法设计的策略,技巧2)怎样验证算法: 验证算法可以正确运行。 程序验证; 算法证明3)怎样分析算法: 算法分析,分析算法的性能(时间/空间)4)怎样

3、测试算法: 包括调试、评测本课程主要集中于算法的设计与分析。2022-3-4算法设计与分析课件71.从机器语言到高级语言的抽象1.2 表达算法的抽象机制高级程序设计语言的主要好处是:(4)把繁杂琐碎的事务交给编译程序,所以自动化程度高,开发周期短,程序员可以集中时间和精力从事更重要的创造性劳动,提高程序质量。(1)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需 要几周时间的培训就可以胜任程序员的工作;(2)高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而所写出来的程序

4、可植性好、重用率高;2022-3-4算法设计与分析课件82.抽象数据类型1.2 表达算法的抽象机制 抽象数据类型是算法的一个数据模型连同定义在该模型上并作为算法构件的一组运算。 抽象数据类型带给算法设计的好处有: (1)算法顶层设计与底层实现分离;(2)算法设计与数据结构设计隔开,允许数据结构自由选择;(3)数据模型和该模型上的运算统一在ADT中,便于空间和时间耗费的折衷;(4)用抽象数据类型表述的算法具有很好的可维护性;(5)算法自然呈现模块化;(6)为自顶向下逐步求精和模块化提供有效途径和工具;(7)算法结构清晰,层次分明,便于算法正确性的证明和复杂性的分析。 2022-3-4算法设计与分

5、析课件9在本书中,采用Java语言描述算法。1.1.JavaJava程序结构程序结构 1.3 描述算法以下,对JavaJava语言的若干重要特性作简要概述。 (1)Java程序的两种类型:应用程序和appletapplet区别:应用程序的主方法为main,其可在命令行中用命令语句 java 应用程序名 来执行;applet的主方法为init,其必须嵌入HTML文件,由Web浏览器或applet阅读器来执行。(2)包:java程序和类可以包(packages)的形式组织管理。 (3)import语句:在java程序中可用import语句加载所需的包。例如,import java.io.*;语句加

6、载java.io包。 2022-3-4算法设计与分析课件101.3 描述算法2.2.JavaJava数据类型数据类型数据类型 基本数据类型:详见下页表1-1 非基本数据类型:如 Byte, Integer, Boolean, String等。 Java对两种数据类型的不同处理方式: 对基本数据类型:在声明一个具有基本数据类型的变量时,自动建立该数据类型的对象(或称实例)。如:int k;对非基本数据类型:语句 String s; 并不建立具有数据类型String的对象,而是建立一个类型String的引用对象,数据类型为String的对象可用下面的new语句建立。 s = new StringS

7、tring(“Welcome”);StringString s = new StringString(“Welcome”);2022-3-4算法设计与分析课件111.3 描述算法表格表格1-1 1-1 JavaJava基本数据类型基本数据类型类型缺省值分配空间(bits)取值范围booleanfalse1true,falsebyte08-128,127charu000016u0000,uFFFFdouble0.0644.9*10-324 1.8*10308float0.0321.4*10-45 3.4*1038int032-2147483648,2147483647long0649.2*101

8、7short016-32768,327672022-3-4算法设计与分析课件121.3 描述算法3.3.方法方法在Java中,执行特定任务的函数或过程统称为方法(methods) 。例如,java的MathMath类类给出的常见数学计算的方法如下表所示:方法方法功能功能方法方法功能功能abs(x)x的绝对值max(x,y)x和y中较大者ceil(x)不小于x的最小整数min(x,y)x和y中较小者cos(x)x的余弦pow(x,y)xyexp(x)exsin(x)x的正弦floor(x)不大于x的最大整数sqrt(x)x的平方根log(x)x的自然对数tan(x)x的正切2022-3-4算法设

9、计与分析课件131.3 描述算法3.3.方法方法 2baba计算表达式 值的自定义方法ab描述如下: public static int ab(int a, int b) return (a+b+Math.abs(a-b)/2; (1)方法参数:Java中所有方法的参数均为值参数。上述方法ab中,a和b是形式参数,在调用方法时通过实际参数赋值。 (2)方法重载:Java允许方法重载,即允许定义有不同签名的同名方法。上述方法ab可重载为: public static double ab(double a, double b) return (a+b+Math.abs(a-b)/2.0; 2022

10、-3-4算法设计与分析课件141.3 描述算法4.4.异常异常 Java的异常提供了一种处理错误的方法。当程序发现一个错误,就引发一个异常,以便在合适地方捕获异常并进行处理。 通常用trytry块来定义异常处理。每个异常处理由一个catchcatch语句组成。 public static void main(String args) try f ( ); catch (exception1) 异常处理; catch (exception2) 异常处理; finally finally块; 2022-3-4算法设计与分析课件151.3 描述算法5.5.JavaJava的类的类(4)访问修饰访问修

11、饰公有(public) 私有(private)保护(protected) Java的类一般由4个部分组成:(1)类名类名(2)数据成员数据成员(3)方法方法2022-3-4算法设计与分析课件161.3 描述算法6.6.通用方法通用方法 下面的方法swapswap用于交换一维整型数组a的位置i和位置j处的值。 public static void swap(int a, int i, int j) int temp = ai; ai = aj; aj = temp; public static void swap(object a, int i, int j) object temp = ai;

12、 ai = aj; aj = temp; 该方法只适用于该方法只适用于整型数组整型数组该方法具有通用性,适用该方法具有通用性,适用于于ObjectObject类型及其所有子类型及其所有子类类 以上方法修改如下:以上方法修改如下:2022-3-4算法设计与分析课件171.3 描述算法6.6.通用方法通用方法 (1 1)ComputableComputable界面界面 public static Computable sum(Computable a, int n) if (a.length = 0) return null; Computable sum = (Computable) a0.ze

13、ro(); for (int i = 0; i n; i+) sum.increment(ai); return sum;利用此界面使利用此界面使方法方法sumsum通用化通用化 2022-3-4算法设计与分析课件181.3 描述算法6.6.通用方法通用方法 (2 2)java.lang.Comparable java.lang.Comparable 界面界面 Java的Comparable 界面中惟一的方法头compareTo用于比较2个元素的大小。例如java.lang.CpareTo(y)返回x-y的符号,当xy时返回正数。(3 3)OperableOperable 界面界面 有些通用方

14、法同时需要Computable界面和Comparable 界面的支持。为此可定义Operable界面如下:public interface Operable extends Computable, Comparable (4 4)自定义包装类)自定义包装类 由于Java的包装类如Integer等已定义为final型,因此无法定义其子类,作进一步扩充。为了需要可自定义包装类。 2022-3-4算法设计与分析课件191.3 描述算法7.7.垃圾收集垃圾收集8.8.递归递归Java的newnew运算用于分配所需的内存空间。例如, int a = new int500000; 分配2000000字节空

15、间给整型数组a。频繁用new分配空间可能会耗尽内存。Java的垃垃圾收集器圾收集器会适时扫描内存,回收不用的空间(垃圾)给new重新分配。 Java允许方法调用其自身。这类方法称为递归方法。public static int sum(int a, int n) if (n=0) return 0; else return an-1+sum(a,n-1); 计算一维整型数组前计算一维整型数组前n n个个元素之和的递归方法元素之和的递归方法 2022-3-4算法设计与分析课件201.4 算法复杂性分析 算法复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性时间复杂性,需要的空间

16、资源的量称为空间复杂性空间复杂性。这个量应该只依赖于算法要解的问题的规模、算法的输入和算法本身的函数。如果分别用N、I和A表示算法要解问题的规模、算法的输入和算法本身,而且用C表示复杂性,那么,应该有C=F(N,I,A)。 一般把时间复杂性和空间复杂性分开,并分别用T和S来表示,则有: T=T(N,I)和S=S(N,I) 。(通常,让A隐含在复杂性函数名当中) 2022-3-4算法设计与分析课件211.4 算法复杂性分析最坏情况下的时间复杂性:),(maxmaxINT(N)TNDI),(max1INetkiiiDIN),(*1INetkiii),(*INT最好情况下的时间复杂性:),(minm

17、inINT(N)TNDI),(min1INetkiiiDIN),(1INetkiii),(INT平均情况下的时间复杂性:NDIINTIP(N)T),()(avgNDIkiiiINetIP),()(1 其中DN是规模为N的合法输入的集合;I*是DN中使T(N, I*)达到Tmax(N)的合法输入; 是中使T(N, )达到Tmin(N)的合法输入;而P(I)是在算法的应用中出现输入I的概率。II2022-3-4算法设计与分析课件221.4 算法复杂性分析算法复杂性在渐近意义下的阶:渐近意义下的记号:O、o 设f(N)和g(N)是定义在正数集上的正函数。 O的定义的定义:如果存在正的常数C和自然数N

18、0,使得当NN0时有f(N)Cg(N),则称函数f(N)当N充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N)。即f(N)的阶不高于g(N)的阶。 根据O的定义,容易证明它有如下运算规则: (1)O(f)+O(g)=O(max(f,g); (2)O(f)+O(g)=O(f+g); (3)O(f)O(g)=O(fg); (4)如果g(N)=O(f(N),则O(f)+O(g)=O(f); (5)O(Cf(N)=O(f(N),其中C是一个正的常数; (6)f=O(f)。 2022-3-4算法设计与分析课件231.4 算法复杂性分析 的定义的定义:如果存在正的常数C和自然数N0,使得

19、当NN0时有f(N)Cg(N),则称函数f(N)当N充分大时下有界,且g(N)是它的一个下界,记为f(N)=(g(N)。即f(N)的阶不低于g(N)的阶。 的定义的定义:定义f(N)= (g(N)当且仅当f(N)=O(g(N)且f(N)= (g(N)。此时称f(N)与g(N)同阶。 o o的定义的定义:对于任意给定的0,都存在正整数N0,使得当NN0时有f(N)/Cg(N),则称函数f(N)当N充分大时的阶比g(N)低,记为f(N)=o(g(N)。 例如,4NlogN+7=o(3N2+4NlogN+7)。 2022-3-4算法设计与分析课件25n将要求解的较大规模的问题分割成k个更小规模的子问

20、题。nT(n/2)T(n/2)T(n/2)T(n/2)T(n)= n对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。2022-3-4算法设计与分析课件26n对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/

21、4) n将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。 2022-3-4算法设计与分析课件27n将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。nT(n)=n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4)2022-3-4算法设计与分析课件28n将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。nT(

22、n)=n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4) 分治法的设计思想是,将一个难以直接解决的大问题,分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分割成一些规模较小的相同问题,以便各个击破,分而治之。分而治之。凡治众如治寡,分数是也。凡治众如治寡,分数是也。-孙子兵法孙子兵法2022-3-4算法设计与分析课件292.1 n直接或间接地调用自身的算法称为递归

23、算法递归算法。用函数自身给出定义的函数称为递归函数递归函数。n由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。n分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。下面来看几个实例。下面来看几个实例。2022-3-4算法设计与分析课件302.1 例例1 1 阶乘函数阶乘函数阶乘函数可递归地定义为:00)!1(1!nnnnn边界条件边界条件递归方程递归方程边界条件与递归方程是递归函数的二个要素,递归函数

24、只有具备了这两个要素,才能在有限次计算后得出结果。2022-3-4算法设计与分析课件312.1 例例2 Fibonacci2 Fibonacci数列数列无穷数列1,1,2,3,5,8,13,21,34,55,被称为Fibonacci数列。它可以递归地定义为:边界条件边界条件递归方程递归方程110)2() 1(11)(nnnnFnFnF第n个Fibonacci数可递归地计算如下:public static int fibonacci(int n) if (n 1时,perm(R)由(r1)perm(R1),(r2)perm(R2),(rn)perm(Rn)构成。 2022-3-4算法设计与分析课

25、件372.1 例例5 5 整数划分问题整数划分问题将正整数n表示成一系列正整数之和:n=n1+n2+nk,其中n1n2nk1,k1。正整数n的这种表示称为正整数n的划分。求正整数n的不同划分个数。 例如正整数6有如下11种不同的划分: 6; 5+1; 4+2,4+1+1; 3+3,3+2+1,3+1+1+1; 2+2+2,2+2+1+1,2+1+1+1+1; 1+1+1+1+1+1。2022-3-4算法设计与分析课件38(2) q(n,m)=q(n,n),mn;最大加数n1实际上不能大于n。因此,q(1,m)=1。(1) q(n,1)=1,n1;当最大加数n1不大于1时,任何正整数n只有一种划

26、分形式,即nn111 (4) q(n,m)=q(n,m-1)+q(n-m,m),nm1;正整数n的最大加数n1不大于m的划分由n1=m的划分和n1n-1 的划分组成。(3) q(n,n)=1+q(n,n-1);正整数n的划分由n1=n的划分和n1n-1的划分组成。2.1 例例5 5 整数划分问题整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。2022-3-4算法设计与分析课件39

27、11, 1),() 1,() 1,(1),(1),(mnmnmnmnmmnqmnqnnqnnqmnq2.1 例例5 5 整数划分问题整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。正整数n的划分数p(n)=q(n,n)。 2022-3-4算法设计与分析课件402.1 例例6 Hanoi6 Hanoi塔问题塔问题设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自

28、下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。2022-3-4算法设计与分析课件41在问题规模较大时,较难找到一般的方法,因此我们尝试用递归技术来解决这个问题。当n=1时,问题比较简单。此时,只要将编号为1的圆盘从塔座a直接移至塔座b上即可。当n1时,需要利用塔座c作为辅助塔座。此时若能设法将n-1个较小的圆盘依照移动规则从塔座a移

29、至塔座c,然后,将剩下的最大圆盘从塔座a移至塔座b,最后,再设法将n-1个较小的圆盘依照移动规则从塔座c移至塔座b。由此可见,n个圆盘的移动问题可分为2次n-1个圆盘的移动问题,这又可以递归地用上述方法来做。由此可以设计出解Hanoi塔问题的递归算法如下。2.1 例例6 Hanoi6 Hanoi塔问题塔问题 public static void hanoi(int n, int a, int b, int c) if (n 0) hanoi(n-1, a, c, b); move(a,b); hanoi(n-1, c, b, a); 2022-3-4算法设计与分析课件42优点:优点:结构清晰,

30、可读性强,而且容易用数学归纳法来结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带证明算法的正确性,因此它为设计算法、调试程序带来很大方便。来很大方便。缺点:缺点:递归算法的运行效率较低,无论是耗费的计算时递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。间还是占用的存储空间都比非递归算法要多。2022-3-4算法设计与分析课件43解决方法:解决方法:在递归算法中消除递归调用,使其转化在递归算法中消除递归调用,使其转化为非递归算法。为非递归算法。1.1.采用一个用户定义的栈来模拟系统的递归调用工采用一个用户定义的栈来模拟系统

31、的递归调用工作栈。该方法通用性强,但本质上还是递归,只作栈。该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不过人工做了本来由编译器做的事情,优化效果不明显。不明显。2.2.用递推来实现递归函数。用递推来实现递归函数。3.3.通过通过CooperCooper变换、变换、反演变换能反演变换能将一些递归转化为将一些递归转化为尾递归,从而迭代求出结果。尾递归,从而迭代求出结果。 后两种方法在时空复杂度上均有较大改善,后两种方法在时空复杂度上均有较大改善,但其适用范围有限。但其适用范围有限。2022-3-4算法设计与分析课件44n该问题的规模缩小到一定的程度就可以容易地解

32、决;该问题的规模缩小到一定的程度就可以容易地解决;n该问题可以分解为若干个规模较小的相同问题,即该问题具有该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质最优子结构性质n利用该问题分解出的子问题的解可以合并为该问题的解;利用该问题分解出的子问题的解可以合并为该问题的解;n该问题所分解出的各个子问题是相互独立的,即子问题之间不该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。包含公共的子问题。 因为问题的计算复杂性一般是随着问题规模的增加而增加,因此大部分问题满足这个特征。这条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用

33、能否利用分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算法贪心算法或动态规划动态规划。这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划动态规划较好。2022-3-4算法设计与分析课件45divide-and-conquer(P) if ( | P | = n0) adhoc(P); /解决小规模的问题 divide P into smaller subinstances P1,P2,.,Pk;/分解问题 for (i=1,i=k,i+) yi=divid

34、e-and-conquer(Pi); /递归的解各子问题 return merge(y1,.,yk); /将各子问题的解合并为原问题的解 人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡平衡(balancing)子问题子问题的思想,它几乎总是比子问题规模不等的做法要好。2022-3-4算法设计与分析课件46一个分治法将规模为n的问题分成k个规模为nm的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用mer

35、ge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:11)()/() 1 ()(nnnfmnkTOnT通过迭代法求得方程的解:1log0log)/()(nmjjjkmmnfknnT注意注意:递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当minmi+1时,T(mi)T(n)T(mi+1)。 2022-3-4算法设计与分析课件47分析:如果n=1即只有一个元素,则只要比较这个元素和x就可以确定

36、x是否在表中。因此这个问题满足分治法的第一个适用条件给定已按升序排好序的给定已按升序排好序的n个元素个元素a0:n-1,现要在这现要在这n个元素中找个元素中找出一特定元素出一特定元素x。分析:分析:该问题的规模缩小到一定的程度就可以容易地解决;该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题该问题可以分解为若干个规模较小的相同问题;分解出的子问题的解可以合并为原问题的解;分解出的子问题的解可以合并为原问题的解;分解出的各个子问题是相互独立的。分解出的各个子问题是相互独立的。 2022-3-4算法设计与分析课件48分析:比较x和a的中间元素amid,若x=a

37、mid,则x在L中的位置就是mid;如果xai,同理我们只要在amid的后面查找x即可。无论是在前面还是后面查找x,其方法都和在a中查找x一样,只不过是查找的规模缩小了。这就说明了此问题满足分治法的第二个和第三个适用条件。给定已按升序排好序的给定已按升序排好序的n个元素个元素a0:n-1,现要在这现要在这n个元素中找个元素中找出一特定元素出一特定元素x。2022-3-4算法设计与分析课件49分析:很显然此问题分解出的子问题相互独立,即在ai的前面或后面查找x是独立的子问题,因此满足分治法的第四个适用条件。给定已按升序排好序的给定已按升序排好序的n个元素个元素a0:n-1,现要在这现要在这n个元

38、素中找个元素中找出一特定元素出一特定元素x。分析:分析:该问题的规模缩小到一定的程度就可以容易地解决;该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题该问题可以分解为若干个规模较小的相同问题;分解出的子问题的解可以合并为原问题的解;分解出的子问题的解可以合并为原问题的解;分解出的各个子问题是相互独立的。分解出的各个子问题是相互独立的。 2022-3-4算法设计与分析课件50给定已按升序排好序的给定已按升序排好序的n个元素个元素a0:n-1,现要在这现要在这n个元素中找个元素中找出一特定元素出一特定元素x。据此容易设计出二分搜索算法二分搜索算法:public

39、 static int binarySearch(int a, int x, int n) / 在 a0 = a1 = . = an-1 中搜索 x / 找到x时返回其在数组中的位置,否则返回-1 int left = 0; int right = n - 1; while (left amiddle) left = middle + 1; else right = middle - 1; return -1; / 未找到x 算法复杂度分析:算法复杂度分析:每执行一次算法的while循环, 待搜索数组的大小减少一半。因此,在最坏情况下,while循环被执行了O(logn) 次。循环体内运算需要

40、O(1) 时间,因此整个算法在最坏情况下的计算时间复杂性为O(logn) 。2022-3-4算法设计与分析课件51 请设计一个有效的算法,可以进行两个请设计一个有效的算法,可以进行两个n n位大整数的乘法运算位大整数的乘法运算u小学的方法:O(n2) 效率太低u分治法: 复杂度分析复杂度分析T(n)=O(n2) 没有改进没有改进11)()2/(4) 1 ()(nnnOnTOnTabcdX = Y = X = a 2n/2 + b Y = c 2n/2 + d XY = ac 2n + (ad+bc) 2n/2 + bd 2022-3-4算法设计与分析课件52 请设计一个有效的算法,可以进行两个

41、请设计一个有效的算法,可以进行两个n n位大整数的乘法运算位大整数的乘法运算u小学的方法:O(n2) 效率太低u分治法: XY = ac 2n + (ad+bc) 2n/2 + bd 为了降低时间复杂度,必须减少乘法的次数。1.XY = ac 2n + (a-c)(b-d)+ac+bd) 2n/2 + bd2.XY = ac 2n + (a+c)(b+d)-ac-bd) 2n/2 + bd复杂度分析复杂度分析T(n)=O(nlog3) =O(n1.59) 较大的改进较大的改进11)()2/(3) 1 ()(nnnOnTOnT细节问题细节问题:两个XY的复杂度都是O(nlog3),但考虑到a+c

42、,b+d可能得到m+1位的结果,使问题的规模变大,故不选择第2种方案。2022-3-4算法设计与分析课件53 请设计一个有效的算法,可以进行两个请设计一个有效的算法,可以进行两个n n位大整数的乘法运算位大整数的乘法运算u小学的方法:O(n2) 效率太低u分治法: O(n1.59) 较大的改进u更快的方法?如果将大整数分成更多段,用更复杂的方式把它们组合起来,将有可能得到更优的算法。最终的,这个思想导致了快速傅利叶变换快速傅利叶变换(Fast Fourier Transform)的产生。该方法也可以看作是一个复杂的分治算法,对于大整数乘法,它能在O(nlogn)时间内解决。是否能找到线性时间的

43、算法?目前为止还没有结果。2022-3-4算法设计与分析课件54A和B的乘积矩阵C中的元素Ci,j定义为: nkjkBkiAjiC1若依此定义来计算A和B的乘积矩阵C,则每计算C的一个元素Cij,需要做n次乘法和n-1次加法。因此,算出矩阵C的 个元素所需的计算时间为O(n3)u传统方法:O(n3)2022-3-4算法设计与分析课件55使用与上例类似的技术,将矩阵A,B和C中每一矩阵都分块成4个大小相等的子矩阵。由此可将方程C=AB重写为:u传统方法:O(n3)u分治法:222112112221121122211211BBBBAAAACCCC由此可得:2112111111BABAC221212

44、1112BABAC2122112121BABAC2222122122BABAC复杂度分析复杂度分析T(n)=O(n3) 没有改进没有改进22)()2/(8) 1 ()(2nnnOnTOnT2022-3-4算法设计与分析课件56为了降低时间复杂度,必须减少乘法的次数。222112112221121122211211BBBBAAAACCCC)(2212111BBAM2212112)(BAAM1122213)(BAAM)(1121224BBAM)(221122115BBAAM)(222122126BBAAM)(121121117BBAAM624511MMMMC2112MMC4321MMC731522

45、MMMMC复杂度分析复杂度分析T(n)=O(nlog7) =O(n2.81) 较大的改进较大的改进22)()2/(7) 1 ()(2nnnOnTOnT2022-3-4算法设计与分析课件57u更快的方法?Hopcroft和Kerr已经证明(1971),计算2个矩阵的乘积,7次乘法是必要的。因此,要想进一步改进矩阵乘法的时间复杂性,就不能再基于计算22矩阵的7次乘法这样的方法了。或许应当研究或矩阵的更好算法。在Strassen之后又有许多算法改进了矩阵乘法的计算时间复杂性。目前最好的计算时间上界是 O(n2.376)是否能找到O(n2)的算法?目前为止还没有结果。2022-3-4算法设计与分析课件

46、58在一个2k2k 个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。2022-3-4算法设计与分析课件59当k0时,将2k2k棋盘分割为4个2k-12k-1 子棋盘(a)所示。特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,如 (b)所示,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化

47、为棋盘11。 2022-3-4算法设计与分析课件60 public void chessBoard(int tr, int tc, int dr, int dc, int size) if (size = 1) return; int t = tile+, / L型骨牌号 s = size/2; / 分割棋盘 / 覆盖左上角子棋盘 if (dr tr + s & dc tc + s) / 特殊方格在此棋盘中 chessBoard(tr, tc, dr, dc, s); else / 此棋盘中无特殊方格 / 用 t 号L型骨牌覆盖右下角 boardtr + s - 1tc + s - 1 = t

48、; / 覆盖其余方格 chessBoard(tr, tc, tr+s-1, tc+s-1, s); / 覆盖右上角子棋盘 if (dr = tc + s) / 特殊方格在此棋盘中 chessBoard(tr, tc+s, dr, dc, s); else / 此棋盘中无特殊方格 / 用 t 号L型骨牌覆盖左下角 boardtr + s - 1tc + s = t; / 覆盖其余方格 chessBoard(tr, tc+s, tr+s-1, tc+s, s); / 覆盖左下角子棋盘 if (dr = tr + s & dc = tr + s & dc = tc + s) / 特殊方格在此棋盘中

49、chessBoard(tr+s, tc+s, dr, dc, s); else / 用 t 号L型骨牌覆盖左上角 boardtr + stc + s = t; / 覆盖其余方格 chessBoard(tr+s, tc+s, tr+s, tc+s, s); 复杂度分析复杂度分析T(n)=O(4k) 渐进意义下的最优算法00) 1 () 1(4) 1 ()(kkOkTOkT2022-3-4算法设计与分析课件61基本思想:基本思想:将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。 public static void mergeS

50、ort(Comparable a, int left, int right) if (leftright) /至少有2个元素 int i=(left+right)/2; /取中点 mergeSort(a, left, i); mergeSort(a, i+1, right); merge(a, b, left, i, right); /合并到数组b copy(a, b, left, right); /复制回数组a 复杂度分析复杂度分析T(n)=O(nlogn) 渐进意义下的最优算法11)()2/(2) 1 ()(nnnOnTOnT2022-3-4算法设计与分析课件62算法mergeSort的递

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(《算法设计与分析》全册配套完整教学课件1.pptx)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|