1、3. 3. 几种常见的角规几种常见的角规(1)杆式角规杆式角规 构造:长度为L的木尺的一端安装一个缺口宽度为 l 的金属片 断面积系数(Fg) : 视角:取决于l 和L的大小。最常用的角规其l 1cm, L=50cm, Fg1,而视角4 .45 812)50/5 . 0(tano12)(2500LlFg3. 3. 几种常见的角规几种常见的角规(2)棱镜角规棱镜角规 构造、原理:光线折射产生位移。 用法:横持镜片,透过镜片观测胸高部位,树干影象产生位移:3. 3. 几种常见的角规几种常见的角规(3)速测镜速测镜(relascope) 毕特利希(Bitterlieh W,1952)研制,主要用于角
2、规测。 我国华网坤等(1963)仿造设计投产。 有关速测镜的构造、原理、功能及使用方法见第一章。3. 3. 几种常见的角规几种常见的角规(4)自平杆式角规自平杆式角规 简易杆式角规的基础上作了两点重大改进: (1)角规改为杆长可变; (2)具有自动改正坡度的功能 ,其原理: 当坡度为 度时 ,缺口宽度 l 相应变窄成为 缺口宽度为1cm,对应的拉杆长度为50cm,即断面积系数 Fg=1 。)cos(l4 4、计数方法、计数方法杆式角规计数法示意图棱镜角规计数法示意图1.3m相割计1株 相切计0.5株相余不计数相割计1株 相切计0.5株相余不计数 5 5、角规测树基本原理、角规测树基本原理同心圆
3、原理同心圆原理 这种原理是以测点为中心,对每株树作一圆形样地(样圆)。样圆的面积取决于D的大小,因此样地的面积是可变的,故称不等概抽样。1)假设林内所有林木地胸径相等为 Dj,如图 设P2为临界树(相切),则用角规绕测时,形成以Rj为半径,O为中心的假想扩大圆 令角规尺长为L,缺口宽为l, 则:样圆面积:jjDlLR222jjjDlLRS2)若假想圆样地内共有Zj株树时,即角规绕测计数为Zj ,则样圆内的树木断面积为:3)将样圆面积换算为1公顷时,林木每公顷断面积可表示为:令: 则:24jjjDZgjjjjjjjZLlDlLDZSgG222225001000041000022500LlFgjg
4、jZFhmG24)原理的推广应用:原理的推广应用:在实际林分中,树木的直径并非相等,且有粗细、远近之分。设林分中共有m个直径组Dj(j1,2,3.m)。按上述原理,用角规绕测时,实际上对每组直径Dj均形成一个以O为中心,以Rj为半径的m个假想样圆,从而形成m多重重叠的同心圆。凡落在相应同心圆内的则计数为1或0.5,反之不计数。显然林分的总断面积为:ZFZFZFZFZFGGGhmGgmjigmgggm1212125)若在林分中设置了n个角规点进行观测时,其计算林分每公顷断面积公式应改为:式中:Zi为第i个角规点上计数的树木株数。)/(12211hmmZFZnFGnGgniignii Fg的确定:
5、当L50cm时 l= 0.707 Fg=0.5 l= 1.0 Fg=1 l= 1.414 Fg=2 l= 2.0 Fg=4250LlFg5 5、角规测树基本原理、角规测树基本原理三角函数原理三角函数原理角规测定林分每公顷胸高断面积原理是整个角规测树理论体系的基础。断面积/角规系数(basal area factor) Fg :计数1株时,林木总断面积数Fg (m2/ hm2)。cACBO用相切树分析断面积系数abAC=l/2;OC=L;Oa=R;ac=d/2因为OAC Oca 所以 OC:Oa=AC:ca即:lLdR 24ad22410000gdFaAdLl故)/(2500222hmmLlFg
6、如l=1cm,L=50cm,则Fg=1 m2/ hm25 5、角规测树基本原理、角规测树基本原理三角函数原理三角函数原理又因为:样圆面积A=R2,树干胸高断面积为 。(一)角规绕测技术要求(一)角规绕测技术要求1. 观测时要对准胸高位置;2. 被遮挡时,应砍掉灌木、杂草或变换测点,但应保持点位到被测树干中心距离不变,测完后返回原测点。3. 避免漏测与重测,应在绕测起点树作标志或正反绕测2次以相互检查或求平均值;4. 正确界定相切木/临界木。实测角规点到树干中心距离S与胸径d,计算:二、角规测树技术gFdR50SR:相割;S=R:相切;SR:相余。相切木/临界木判别示意图1. 选择选择Fg的作用
7、:的作用: Fg越小,控制范围越大,即观测距离越远,误越小,控制范围越大,即观测距离越远,误测测12株影响不大,但判断难,工效低,易出错;株影响不大,但判断难,工效低,易出错; Fg越大,控制范围越小,即观测距离越近,误越大,控制范围越小,即观测距离越近,误测测12株影响大,但判断易,工效高,不易出错;株影响大,但判断易,工效高,不易出错;2. Fg选择依据:林分的林木直径与密度。选择依据:林分的林木直径与密度。(二)选择角规常数(二)选择角规常数林分特征与选用角规常数参照表林分特征角规常数( Fg)平均直径816的中龄林任意平均直径但疏密度为0.30.5的林分0.5平均直径1728,疏密度为
8、0.61.0的中、近熟林1.0平均直径28以上,疏密度为0.8以上的成、过熟林2或许4注:我国常采用Fg=1或2(m2/ hm2)(三)角规点数确定(三)角规点数确定1. 用用典型取样典型取样选择角规点选择角规点林分调查角规点数的确定( Fg=1)林分面积( hm2)1 2345678910 1115 16角规点个数5 79111214151617182. 用用随机取样随机取样确定角规点确定角规点 林分调查角规点数的确定( Fg=1,可靠性95%)变动系数(%)30精度要求(%)8090角规点个数636 C变动系数;E相对误差限 222Ectn 1. 原理:杆长改正、缺口改正2. 现多用自动改
9、正坡度的角规自平杆式角规 (四)坡度改正(四)坡度改正(五)林缘误差的消除(五)林缘误差的消除 布点时使样点与林缘的距离超过最大观测距离。最大观测距离的估测: 林缘误差修正系数表m ax50gRdF绕测角度() 30 60 90 120 180 修正系数126432360 角规控制检尺:用角规绕测时,对于计数树木进行检尺,并按径阶统计其株数。1、一般通式zjjjggyFY1三、角规测树在林业上的应用式中: Y:调查林分的每公顷调查量; Fg:断面积系数; yj:第j株计数木的调查量; gj:第j株计数木的断面积; z:计数木株数。2、测定每公顷断面积)/)(2(22hmmmnFZFGgg3、测
10、定每公顷株数)/(2hmFgzgGnNgjjjjj株4、测定每公顷蓄积)/(23hmmvFgzvnMjgjjjj条件:有适用的一元材积表)/()(23hmmfhzFvnMjjgjjjjjjhgfv jjjgvfh)(一元材积表径阶材积径阶直接查表法形高法NGDg41006、测定林分平均高垂直角规,仰角6034。绕测6034仪器高垂直角规绕测平均高示意图仪器高NZHh1005、测定林分平均直径7、角规测树步骤林分特征取样方法林分面积精度要求角规常数角规点个数水平角规绕测改正垂直角规绕测判断控制检尺坡度林缘选择与确定角规点判断计算断面积计算蓄积计算株数计算平均高计算平均直径准备阶段外业调查阶段内业
11、处理阶段一元材积表一元材积表8、角规测树计算举例角规控制检尺计算表( Fg=1,Zh=11.5)径阶单株材积v(m3)单株断面积g(m2)计数株数理论株数(株/hm2)公顷株数(株/hm2)公顷蓄积(m3/hm2)681012140.01310.02450.03990.05940.08310.002830.005030.007850.011310.0153911253353.36198.81254.78442.09194.933531992554421954.62904.870810.165726.260216.1987合计12144462.1244)(3 .1014441241004100cmNGDg)(2.103.114445.11100100mNZHh眼高