1、2022 模拟 -计数原理一、单选题1. (2022 莆田模拟 ) x2 - 1展开式中的常数项为 ( )6 xA. - 30 B. - 15 C. 15 D. 302. (2022 泉州模拟 ) (x2 - x + 1) (x + 1)6 的展开式中 x7 的系数为 ( )A. 5 B. 6 C. 7 D. 153. (2022 漳州模拟 ) 已知二项式 (ax + y)5(a R) 的展开式的所有项的系数和为 32,则 x2 - a10 的展开x 式中常数项为 ( )A. 45 B. - 45 C. 1 D. - 14. (2022 菏泽一模 ) (a - x) (2 + x)6 的展开式
2、中 x5 的系数是 12,则实数 a 的值为 ( )A. 4 B. 5 C. 6 D. 75. (2022 福州模拟 ) 从集合 1,2,3 的非空子集中任取两个不同的集合 A 和 B,若 A B ,则不同的取法共有 ( )A. 42 种 B. 36 种 C. 30 种 D. 15 种6. (2022 益阳模拟 ) 为迎接新年到来,某中学 2020 年“唱响时代强音,放飞青春梦想”元旦文艺晚会如期举行校文娱组委会要在原定排好的 8 个学生节目中增加 2 个教师节目,若保持原来的 8 个节目的出场顺序不变,则不同排法的种数为 ( )A. 36 B. 45 C. 72 D. 907. (2022
3、湖南模拟 ) 杭州 2022 年亚运会将于于 2022 年 9 月 10 日至 25 日在中国浙江杭州举行,现有 A、B、C、D 四位同学参与志愿者服务活动,前往三个不同的运动场馆若要求每个人只能去其中的任意场馆服务,并且每个场馆至少有一名志愿者前往那么在 A 和 B 不去同样的一个场馆的条件下,共有 () 种分配方案A. 18 B. 30 C. 33 D. 368. (2022 衡阳一模 )2022 年 2 月 4 日,中国北京第 24 届奥林匹克冬季运动会开幕式以二十四节气的方式开始倒计时创意新颖,惊艳了全球观众衡阳市某中学为了弘扬我国二十四节气文化,特制作出“立春”、“惊蛰”、“清明”、
4、“立夏”、“芒种”、“小暑”六张知识展板分别放置在六个并排的文化橱窗里,要求“立春”和“惊蛰”两块展板相邻,且“清明”与“惊蛰”两块展板不相邻,则不同的放置方式有多少种? ( )A. 192 B. 240 C. 120 D. 288第 1 页共 6 页9. (2022 株洲模拟 ) (1 - 2x2) x - 1的展开式中的常数项为 ( )6 xA. 10 B. - 20 C. - 30 D. - 5010. (2022 湖南模拟 ) 若 x6 = a0 + a1(x + 1) + a2(x + 1)2 + a3(x + 1)3 + +a6(x + 1)6,则 a3 = ( )A. 20 B.
5、 - 20 C. 15 D. - 1511. (2022 湖北模拟 ) 已知 1 x + my (2x - y)5 的展开式中 x2y4 的系数为 80,则 m 的值为 ( )A. - 2 B. 2 C. - 1 D. 112. (2022 辽宁一模 )A,B,C,D 四人并排站成一排,如果 A 与 B 相邻,那么不同的排法种数是 ( )A. 24 种 B. 12 种 C. 48 种 D. 36 种13. (2007 北京 ) 记者要为 5 名志愿者和他们帮助的 2 位老人拍照,要求排成一排,2 位老人相邻但不排在两端,不同的排法共有 ( )A. 1440 种 B. 960 种 C. 720
6、种 D. 480 种14. (2022 潍坊一模 ) 第十三届冬残奥会于 2022 年 3 月 4 日至 3 月 13 日在北京举行现从 4 名男生,2 名女生中选 3 人分别担任冬季两项、单板滑雪、轮椅冰壶志愿者,且至多有 1 名女生被选中,则不同的选择方案共有 ( )A. 72 种 B. 84 种 C. 96 种 D. 124 种15. (2022 淄博一模 ) 若 (1 - x)8 = a0 + a1(1 + x) + a2(1 + x)2 + +a8(1 + x)8,则 a6 = ( )A. - 448 B. - 112 C. 112 D. 44816. (2022 临沂一模 ) 二项
7、式 2 x + 1的展开式中无理项的项数为 ( )6 xA. 2 B. 3 C. 4 D. 517. (2022 山东一模 )“碳中和”是指企业、团体或个人等测算在一定时间内直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,以抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”某“碳中和”研究中心计划派 5 名专家分别到 A,B,C 三地指导“碳中和”工作,每位专家只去一个地方,且每地至少派驻 1 名专家,则分派方法的种数为 ( )A. 90 B. 150 C. 180 D. 30018. (2022 湛江一模 ) 为提高新农村的教育水平,某地选派 4 名优秀的教师到甲、乙、丙三
8、地进行为期一年的支教活动,每人只能去一个地方、每地至少派一人,则不同的选派方案共有 ( )A. 18 种 B. 12 种 C. 72 种 D. 36 种第 2 页共 6 页19. (2022 广州一模 ) (x + 3y) (x - 2y)6 的展开式中 x5y2 的系数为 ( )A. 60 B. 24 C. - 12 D. - 4820. (2022 江门模拟 ) 第 24 届冬奥会于 2022 年 2 月 4 日在中华人民共和国北京市和河北省张家口市联合举行此届冬奥会的项目中有两大项是滑雪和滑冰,其中滑雪有 6 个分项,分别是高山滑雪、自由式滑雪、单板滑雪、跳台滑雪、越野滑雪和北欧两项,滑
9、冰有 3 个分项,分别是短道速滑、速度滑冰和花样滑冰甲和乙相约去观看比赛,他们约定每人观看两个分项,而且这两个分项要属于不同大项若要求他们观看的分项最多只有一个相同,则不同的方案种数是 ( )A. 324 B. 306 C. 243 D. 16221. (2022 揭阳模拟 )已知 (1 + x) + 2(1 + x)2 + 3(1 + x)3 + +10(1 + x)10 = a0 + a1x + a2x2 + +a10x10,则 a7 = ( )A. 9C131 B. 28 11 C. 29 3 C33 C131 D. 10C13122. (2022 禅城区模拟 ) 甲、乙 、丙 、丁、戊
10、 5 名党员参加“党史知识竞赛”,决出第一名到第五名的名次 ( 无并列名次 ),已知甲排第三,乙不是第一,丙不是第五据此推测 5 人的名次排列情况共有 () 种A. 5 B. 8 C. 14 D. 2123. (2022 丰顺县一模 ) 某项实验,要先后实施 6 个程序,其中程序 A 只能出现在第一或最后一步,程序 B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A. 34 种 B. 48 种 C. 96 种 D. 144 种24. (2022 南通模拟 ) 当前,新冠肺炎疫情进入常态化防控新阶段,防止疫情输入的任务依然繁重,疫情防控工作形势依然严峻、复杂某地区安排 A,B,C,D
11、,E 五名同志到三个地区开展防疫宣传活动,每个地区至少安排一人,且 A,B 两人安排在同一个地区,C,D 两人不安排在同一个地区,则不同的分配方法总数为 ( )A. 86 种 B. 64 种 C. 42 种 D. 30 种25. (2022 南通模拟 ) 某学校每天安排四项课后服务供学生自愿选择参加学校规定:每位学生每天最多选择 1 项;每位学生每项一周最多选择 1 次学校提供的安排表如下:时间 周一 周二 周三 周四课后服务音乐、阅读、口语、阅读、手工、阅读、口语、阅读、体育、编程 编程、美术 科技、体育 体育、编程若某学生在一周内共选择了阅读、体育、编程 3 项,则不同的选择方案共有 (
12、)A. 6 种 B. 7 种 C. 12 种 D. 14 种第 3 页共 6 页26. (2022 如皋市模拟 ) 当前,新冠肺炎疫情进入常态化防控新阶段,防止疫情输入的任务依然繁重,疫情防控工作形势依然严峻、复杂某地区安排 A,B,C ,D 四名同志到三个地区开展防疫宣传活动,每个地区至少安排一人,且 A,B 两人不安排在同一个地区,则不同的分配方法总数为 ( )A. 24 种 B. 30 种 C. 66 种 D. 72 种y627. (2022 南通模拟 ) (x3 - 2y) x2 + 的展开式中,x6y3 的系数为 ( ) xA. - 10 B. 5 C. 35 D. 5028. (2
13、022 南通模拟 ) 校运会期间,要安排 4 名志愿者参加跳高、跳远、接力赛三个项目的保障工作,要求每个项目至少安排 1 名志愿者,每位志愿者只参加一个项目,则所有不同的安排方案有 ( )A. 18 种 B. 24 种 C. 36 种 D. 48 种29. (2022 江苏模拟 ) 设 (1 + 3x)n = a0 + a1x + a2x2 + +anxn,若 a5 = a6,则 n = ( )A. 6 B. 7 C. 10 D. 11二、多选题1. (2022 龙岩模拟 )已知二项式 x - 1 的展开式中各项系数之和是 1n 2x 128,则下列说法正确的有 ( )A. 展开式共有 7 项
14、 B. 二项式系数最大的项是第 4 项C. 所有二项式系数和为 128 D. 展开式的有理项共有 4 项2. (2022 重庆模拟 ) 若 x + 1的展开式中第 3 项与第 8 项的系数相等,则展开式中二项式系数最大的项n x 为 ( )A. 第 4 项 B. 第 5 项 C. 第 6 项 D. 第 7 项3. (2022 济南模拟 ) x + 2的展开式中,下列结论正确的是 ( )6 xA. 展开式共 6 项 B. 常数项为 64C. 所有项的系数之和为 729 D. 所有项的二项式系数之和为 644. (2022 南通模拟 ) 若 (1 - x2)2022 = a0 + a1x + a2
15、x2 + +a4044x4044,则 ( )A. a0 = 1 B.2022a2i = 0i=0C.4044(iai2i-1) = 4044 32021 D.i=12022(-1)i(C2i022)2 = -C21002121i=0三、填空题1. (2022 漳州模拟 ) 已知 (2x2 + y)6 的展开式中 x8y2 的系数为 第 4 页共 6 页2. (2022 厦门模拟 )2021 年秋季,教育部明确要求在全国中小学全面推行课后延时服务,实行“5 + 2”服 务模式某校开设了篮球、围棋和剪纸三门课后延时服务课程,某班的 4 个同学每人选择了其中的一门课程,若每门课程都有人选,则不同的选
16、课方案种数为 ( 用数字作答 )3. (2022 益阳模拟 ) 二项式 ( x - 3 x)5 展开式中含 x2 项的系数为 4. (2022 湖南模拟 ) 在 x - a8的展开式中,x5 的系数为 28,则 a = x5. (2022 湖南二模 ) 一次考试后,学校准备表彰在该次考试中排名前 10 位的同学,其中有 2 位是高三 (1)班的同学现要选 4 人去“表彰会”上作报告,若高三 (1) 班的 2 人同时参加,则 2 人作报告的顺序不能相邻,则要求高三 (1) 班至少有 1 人参加的作报告的方案共有 种 ( 用数字作答 )6. (2022 岳阳一模 ) 有唱歌、跳舞、小品、杂技、相声
17、五个节目制成一个节目单,其中小品、相声不相邻且相声、跳舞相邻的节目单有 种 ( 结果用数字作答 )7. (2022 武昌区模拟 ) 若 (2 - x3) x6 + 1n的展开式中含有常数项,则 n 的最小值等于 x x8. (2022 辽宁一模 ) 第 24 届冬奥会于 2022 年 2 月 4 日在北京国家体育馆胜利开幕冬奥会期间,北京市758 个城市志愿者站点全部“开门迎客”,保障了北京冬奥会顺利举行现将含甲、乙、丙在内的 6 位志愿者分配到 3 个服务站点参加服务,要求每位志愿者只能去 1 个站点,每个站点至少需要分配 1 位志愿者,则甲与乙分配在同一站点,但甲与丙不在同一站点的分配方案
18、共有 种 ( 用数字作答 )9. (2022 辽宁模拟 ) 已知 x + mxx - 1 的展开式中常数项为 -40,则展开式中 15 xx4的系数为 10. (2022 辽宁模拟 ) 已知二项式 ax2 - 16(a 为实常数 ) 展开式的常数项为 45,等比数列 an 的前 n 项 xSn和 Sn 满足 Sn = a 2n + b(b 为实常数 ),则数列an11. (2022 沈阳一模 )若 2x - 1 n展开式的二项式系数之和为 64,则展开式中 x3 项的系数为 ( 用数字作答 ) x212. (2022 沈阳一模 )设 (x2 + 1) (4x - 3)8 = a0 + a1(2
19、x - 1) + a2(2x - 1)2 + +a10(2x - 1)10,则 a1 + a2 + +a10 = 13. (2022 沈阳一模 ) 将 4 个相同的白球、5 个相同的黑球、6 个相同的红球放入 4 个不同盒子中的 3 个中,使得有 1 个空盒且其他 3 个盒子中球的颜色齐全的不同放法共有 种 ( 用数字作答 )14. (2022 重庆模拟 ) (x + 2y) (3x - y)4 的展开式中 x3y2 的系数为 ( 用数字作答 )15. (2022 重庆模拟 ) 已知二项式 x - 1n(n N *) 的展开式中第四项与第七项的二项式系数相等, 2 x则展开式中常数项为第 5
20、页共 6 页16. (2022 泰安一模 ) 在 (1 - x)4(2x + 1)5 的展开式中,含 x2 的项的系数是 17. (2022 山东一模 ) 若 (1 - 2x)n 的展开式中 x3 项的系数为 -160,则正整数 n 的值为 18. (2022 淄博一模 ) 甲 、乙 、丙 3 家公司承包了 6 项工程,每家公司承包 2 项,则不同的承包方案有种19. (2022 如皋市模拟 )设 (1 + 2x)2022 = a0 + a1x + a2x2 + +a2022x2022,则a12 -a222+a323- +a202122021-a202222022= 20. (2022 日照一
21、模 ) 二项式 x - 16展开式的常数项是 2 x21. (2022 梅州模拟 ) 若 (x2 - 3x + 2)5 = a0 + a1x + a2x2 + +a10x10,则 a3 等于 22. (2022 佛山模拟 ) (1 + x + x2)6 展开式中 x4 的系数为 23. (2022 禅城区模拟 ) 在 x - 1的展开式中,含 x 项的系数为5 2x24. (2022 广东一模 ) 二项式 x - 26的展开式中的常数项是 x25. (2018 咸阳二模 ) (x + y) (x - y)8 的展开式中,x2y7 的系数为 26. (2022 江苏二模 )2022 年北京冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”,有着可爱的外表和丰富的寓意,深受各国人民的喜爱某商店有 4 个不同造型的“冰墩墩”吉祥物和 3 个不同造型的“雪容融”吉祥物展示在柜台上,要求“冰墩墩”和“雪容融”彼此间隔排列,则不同的排列方法种数为 ( 用数字作答 )第 6 页共 6 页