1、27.1 圆的认识第27章 圆3. 圆周角导入新课讲授新课当堂练习课堂小结1.理解圆周角的概念,会叙述并证明圆周角定理.2.理解圆周角与圆心角的关系并能运用圆周角定理解决简单的几何问题.(重点、难点)3.理解掌握圆周角定理的推论及其证明过程和运用.(难点)学习目标 问题1 什么叫圆心角?指出图中的圆心角? 顶点在圆心的角叫圆心角, BOC.导入新课导入新课 问题2 如图,BAC的顶点和边有哪些特点?A BAC的顶点在O上,角的两边分别交O于B、C两点.问题引入定义:顶点在圆上的两条射线组成的角叫做圆周角.讲授新课讲授新课圆周角和直径的关系一圆周角必须同时满足两个条件:定点在圆上;两边与圆相交.
2、COABCOBCOBAACOABCOBCOBAA判一判:下列各图中的BAC是否为圆周角并简述理由.(2)(1)(3)(5)(6)顶点不在圆上顶点不在圆上边AC没有和圆相交想一想如图,线段AB是O的直径,点C是 O上的任意一点(除点A、B外),那么,ABC就是直径AB所对的圆周角,想一想,ACB会是怎样的角?OACB解:OA=OB=OC,AOC、BOC都是等腰三角形. OAC=OCA,OBC=OCB.又 OAC+OBC+ACB=180. ACB=OCA+OCB=1802=90.圆周角和直径的关系u圆周角和直径的关系:半圆或直径所对的圆周角都相等,都等于90.知识要点如图,点A、B、C、D在同一个
3、圆上,AC、BD为四边形ABCD的对角线.若AC是半圆,ADC= ,ABC= .9090若AC是直径,做一做典例精析例1 如图,AB是O的直径,A=80.求ABC的大小.OCAB解:AB是O的直径,ACB=90(直径所对的圆周角等于90.)ABC=180-A-ACB =180-90-80=10.D问题1 如图,点A、B、C、D都是O 上的点,请问图中哪些是圆周角?哪些是圆心角?圆周角定理二合作探究圆心角:BOC圆周角:BAC,BDC问题2 分别量出这些角的度数,你有什么发现?BAC=BDCBOC=2BAC问题3 变动点D的位置,看看弧BC所对的圆周角的度数有没有变化?你能得出什么结论?DDD变
4、动点D的位置,圆周角的度数没有变化,并且圆周角的度数恰好为同弧所对的圆心角的度数的一半.圆心O在BAC的内部圆心O在BAC的一边上圆心O在BAC的外部推导与验证n圆心O在BAC的一边上(特殊情形)OA=OCA= CBOC= A+ C12BACBOCOABDOACDOABCDn圆心O在BAC的内部OACDOABDBADBOD1212DACDOC11()22BACBADDACBODDOCBOC 12DACDOC12DABDOBOABDCOADCOABDCOADOABDCOADOABD1()2 12BACDACDABDOCDOBBOCn圆心O在BAC的外部u圆周角定理:在同圆或等圆中,同弧或等弧所对
5、的圆周角相等,都等于该弧所对等于圆心角的一半;相等的圆周角所对的弧相等.圆周角定理及其推论A1A2A3u推论1: 90的圆周角所对的弦是直径.知识要点1.如图,点A、B、C、D在O上,点A与点D在点B、C所在直线的同侧,BAC=35. (1)BOC= ,理由是 ;(2)BDC= ,理由是 .7035同弧所对的圆周角相等一条弧所对的圆周角等于该弧所对的圆心角的一半试一试完成下列填空 1= . 2= . 3= . 5= .2.如图,点A、B、C、D在同一个圆上,AC、BD为四边形ABCD的对角线.4867ABCDO1(2345678典例精析例2 如图,分别求出图中x的大小.60 x3020 x解:
6、(1)同弧所对圆周角相等,x=60.ADBEC(2)连接BF,F同弧所对圆周角相等,ABF=D=20,FBC=E=30.x=ABF+FBC=50. 例3 如图,O直径AC为10cm,弦AD为6cm.(1)求DC的长;(2)若ADC的平分线交O于B, 求AB、BC的长B解:(1)AC是直径, ADC=90.在RtADC中,22221068;DCACAD在RtABC中,AB2+BC2=AC2,(2) AC是直径, ABC=90. BD平分ADC, ADB=CDB.又ACB=ADB , BAC=BDC . BAC=ACB, AB=BC.2210 5 2(cm).22AD BCACB解答圆周角有关问题
7、时,若题中出现“直径”这个条件,通常考虑构造直角三角形来求解.方法归纳 如果一个圆经过一个多边形的各个顶点,这个圆就叫作这个多边形的外接圆.这个多边形叫做圆的内接多边形.u圆内接四边形的定义圆内接四边形三如图,四边形ABCD为O的内接四边形,O为四边形ABCD的外接圆. u探究性质猜想:A与C, B与D之间的关系为 . A+ C=180,B+ D=180推论2(圆内接四边形的性质)圆内接四边形的对角互补.试一试证明:圆内接四边形的对角互补.已知,如图,四边形ABCD为O的内接四边形,O为四边形ABCD的外接圆. 求证BAD+BCD=180.证明:连接OB、OD.根据圆心角定理,可知121BAD
8、=12,1BCD=2.211BAD+BCD=12 =.22( )360 1801四边形ABCD是O的内接四边形,且A=110,B=80,则C= ,D= .2O的内接四边形ABCD中,A B C=1 2 3 ,则D= . 7010090练一练1.判断(1)同一个圆中等弧所对的圆周角相等 ( )(2)相等的弦所对的圆周角也相等 ( )(3)900的角所对的弦是直径 ( )(4)同弦所对的圆周角相等 ( )当堂训练当堂训练2.如图,AB是O的直径, C 、D是圆上的两点,ABD=40,则BCD=_.503.已知ABC的三个顶点在O上,BAC=50,ABC=47,则AOB= ABOCD第2题BACO第
9、3题1664.如图,已知圆心角AOB=100,则圆周角ACB= ,ADB= .DAOCB13050拓展提升:如图,在ABC中,AB=AC,以AB为直径的圆交BC于D,交AC于E,(1)BD与CD的大小有什么关系?为什么?(2)求证: .BDDEABCDEAB是圆的直径,点D在圆上,ADB=90,ADBC,AB=AC,BD=CD,AD平分顶角BAC,即BAD=CAD,(同圆或等圆中相等的圆周角所对弧相等).解:BD=CD.理由是:连接AD,BDDE圆心角类比圆周角圆周角定义圆周角定理圆周角定理的推论课堂小结课堂小结在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.1.90的圆周角所对的弦是直径;2.圆内接四边形的对角互补.1.顶点在圆上,2.两边都与圆相交的角(二者必须同时具备)圆周角与直线的关系半圆或直径所对的圆周角都相等,都等于90(直角).见本课时练习课后作业课后作业