1、2022-4-253.1回归分析的基回归分析的基本思想及其初步本思想及其初步应用(一)应用(一)高二数学高二数学 选修选修2-2022-4-25数学数学统计内容统计内容1. 画散点图画散点图2. 了解最小二乘法的思想了解最小二乘法的思想3. 求回归直线方程求回归直线方程 ybxa4. 用回归直线方程解决应用问题用回归直线方程解决应用问题2022-4-25问题问题1:正方形的面积:正方形的面积y与正方形的边长与正方形的边长x之间之间 的的函数关系函数关系是是y = x2确定性关系确定性关系问题问题2:某水田水稻产量:某水田水稻产量y与施肥量与施肥量x之间是否之间是否 有一个确定性的关系?有一个确
2、定性的关系?例如:在例如:在 7 块并排、形状大小相同的试验田上块并排、形状大小相同的试验田上 进行施肥量对水稻产量影响的试验,得进行施肥量对水稻产量影响的试验,得 到如下所示的一组数据:到如下所示的一组数据:施化肥量施化肥量x 15 20 25 30 35 40 45水稻产量水稻产量y 330 345 365 405 445 450 455复习复习 变量之间的两种关系变量之间的两种关系2022-4-2510 20 30 40 50500450400350300施化肥量施化肥量x 15 20 25 30 35 40 45水稻产量水稻产量y 330 345 365 405 445 450 455
3、xy施化肥量施化肥量水稻产量水稻产量2022-4-25 自变量取值一定时,因变量的取值带有一定自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做随机性的两个变量之间的关系叫做相关关系相关关系。1、定义、定义: 1):相关关系是一种不确定性关系;):相关关系是一种不确定性关系;注注对具有相关关系的两个变量进行统计对具有相关关系的两个变量进行统计分析的方法叫分析的方法叫回归分析回归分析。2):):2022-4-25 现实生活中存在着大量的相关关系。现实生活中存在着大量的相关关系。探索:水稻产量探索:水稻产量y与施肥量与施肥量x之间大致有何规之间大致有何规律?律?2022-4-25
4、10 20 30 40 50500450400350300发现:图中各点,大致分布在某条直线附近。发现:图中各点,大致分布在某条直线附近。探索探索2:在这些点附近可画直线不止一条,哪条直:在这些点附近可画直线不止一条,哪条直线最能代表线最能代表x与与y之间的关系呢?之间的关系呢?施化肥量施化肥量x 15 20 25 30 35 40 45水稻产量水稻产量y 330 345 365 405 445 450 455xy散点图散点图施化肥量施化肥量水稻产量水稻产量2022-4-2510 20 30 40 50500450400350300 xy施化肥量施化肥量水稻产量水稻产量yx2022-4-25探
5、究探究对于一组具有线性相关关系的数据对于一组具有线性相关关系的数据1122(,),(,),.,(,),nnxyxyxy我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:1122211()(),.(2)()nniiiiiinniiiixxyyxn x ybxxxn xy,.(1)ayb x1111,.nniiiixxyynn其 中( ,)x y称为样本点的中心。称为样本点的中心。你能推导出这个公式吗?你能推导出这个公式吗?2022-4-251122(,),(,),.,(,)nnxyxyxy假设我们已经得到两个具有相关关系的变量的一组数
6、据假设我们已经得到两个具有相关关系的变量的一组数据 且回归方程是:且回归方程是:y=bx+a,(1, 2,.,)ixin()iiiiyyybxa其中,其中,a,b是待定参数。当变量是待定参数。当变量x取取 时时 它与实际收集到的它与实际收集到的 之间的偏差是之间的偏差是iyoxy11(,)xy22(,)xy(,)2022-4-2521(,)()()niiiQyxyxyx 易知,截距易知,截距 和斜率和斜率 分别是使分别是使取最小值时取最小值时 的值。由于的值。由于(,)()iiiiQyyyxab,221()2()()() niiiiiyxyxyxyxyxyx2211()2()()() ,nni
7、iiiiiyxyxyxyxyxn yx11()()()()nniiiiiiyxyxyxyxyxyx注 意 到 ,11()()nniiiiyxyxn yx()()0,yxn ynxn yx221(,)()()niiiQyxyxn yx 因 此 ,2222111()2()()()()nnniiiiiiixxxxyyyyn yx2222211221111()()()()()()()()()nniiiinniiiinniiiiiixxyyxxyyn yxxxyyxxxx2022-4-25121()()()niiiniixxyyxxyx这正是我们所要推导的公式。这正是我们所要推导的公式。在上式中,后两项
8、和在上式中,后两项和 无关,而前两项为非负无关,而前两项为非负数,因此要使数,因此要使Q取得最小值,当且仅当前两项的值取得最小值,当且仅当前两项的值均为均为0,即有,即有, 2022-4-251、所求直线方程叫做、所求直线方程叫做回归直线方程回归直线方程; 相应的直线叫做相应的直线叫做回归直线回归直线。2、对两个变量进行的线性分析叫做、对两个变量进行的线性分析叫做线性回归分析线性回归分析。1122211()(),()nniiiiiinniiiixx yyxnxybxxxnxaybxy1、回归直线方程、回归直线方程2022-4-25nn( x- x ) ( y- y )xy- n x yiiii
9、i = 1i = 1b =,nn222( x- x )x- n xiii = 1i = 1 a = y - b x .nn11x =x, y =y.iinni = 1i = 1其其中中最小二乘法:最小二乘法:ybxa( ,)x y称为样本点的中心称为样本点的中心。2022-4-252、求回归直线方程的步骤:、求回归直线方程的步骤:1111(1),nniiiixxyynn求211(2),.nniiiiixx y求(3)代入公式)代入公式1122211()(),(),.(1)nniiiiiinniiiixx yyxnxybxxxnxay bxy(4)写出直线方程为)写出直线方程为y=bx+a,即为
10、所求的回归直线方程。即为所求的回归直线方程。2022-4-25例例1 1、观察两相关量得如下数据、观察两相关量得如下数据: :x-1-2-3-4-553421y-9-7-5-3-115379101010221110,0,110,3010.3,1iiiiiiixyyyxx求两变量间的回归方程求两变量间的回归方程. .解:列表:解:列表:i12345678910 xi-1-2-3-4-553421yi-9-7-5-3-115379xiyi91415125515121492022-4-251 011 02211 01 1 01 0011 1 01 001 0iiiiixybyxxx000aybxb.
11、yx所求回归直线方程为所求回归直线方程为2022-4-25例例2:已知:已知10只狗的血球体积及血球的测量值如下:只狗的血球体积及血球的测量值如下:x45424648423558403950y6.53 6.309.527.50 6.99 5.90 9.49 9.20 6.55 8.72x(血球体积血球体积,mm), y(血球数,百万血球数,百万)(1)画出上表的散点图;)画出上表的散点图;(2)求出回归直线并且画出图形;)求出回归直线并且画出图形;(3)回归直线必经过的一点是哪一点?)回归直线必经过的一点是哪一点?2022-4-253 3、利用回归直线方程对总体进行线性相关性的检验、利用回归直
12、线方程对总体进行线性相关性的检验 例例3 3、炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响、炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系。如果钢水含碳量和冶炼时间的关系。如果已测得炉料熔化完毕时,钢水的含碳量已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间与冶炼时间y(从炉料熔(从炉料熔化完毕到出刚的时间)的一列数据,如下表所示:化完毕到出刚的时间)的一列数据,如下表所示:x(0.01%)104180190177147134150191204121y(min)10020021018515513517020523
13、5125(1 1)y y与与x x是否具有线性相关关系;是否具有线性相关关系;(2 2)如果具有线性相关关系,求回归直线方程;)如果具有线性相关关系,求回归直线方程;(3 3)预测当钢水含碳量为)预测当钢水含碳量为160160个个0.01%0.01%时,应冶炼多少分钟?时,应冶炼多少分钟?2022-4-25(1)(1)列出下表列出下表, ,并计算并计算i12345678910 xi104180190177147134150191204121yi100200210185155135170205235125xiyi104003600039900327452278518090255003915547
14、9401512510101022111159.8,172,265448,312350,287640iiiiiiixyyyxx1011010222211100.9906.(10)(10)iiiiiiix yxyrxxyy于 是 ,2022-4-2510110221101.26710iiiiixybyxxx30.51.aybx 所以回归直线的方程为所以回归直线的方程为 =1.267x-30.51 y(3)(3)当当x=160 x=160时时, 1.267.160-30.51=172, 1.267.160-30.51=172 y(2)设所求的回归方程为设所求的回归方程为2022-4-25例题例题4
15、4 从某大学中随机选出从某大学中随机选出8 8名女大学生,其身名女大学生,其身高和体重数据如下表:高和体重数据如下表:编号12345678身高165165157170175165155170体重4857505464614359 求根据一名女大学生的身高预报她的体重的回求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为归方程,并预报一名身高为172172的女大学生的的女大学生的体重。体重。2022-4-25172.85849.0 xy分析:由于问题中分析:由于问题中要求根据身高预报要求根据身高预报体重,因此选取身体重,因此选取身高为自变量,体重高为自变量,体重为因变量为因变量学学身
16、身 高高 1 17 72 2c cm m女女 大大生生 体体 重重y y = = 0 0. .8 84 49 91 17 72 2 - - 8 85 5. .7 71 12 2 = = 6 60 0. .3 31 16 6( (k kg g) )2.2.回归方程:回归方程:1. 散点图;散点图;2022-4-25n(x -x)(y -y)iii=1r=nn22(x -x)(y -y)iii=1i=1相关系数相关系数正相关;负相关通常,正相关;负相关通常,r0.75,认为两个变量有很强的相关性,认为两个变量有很强的相关性本例中本例中,由上面公式由上面公式r=0.7980.752022-4-25探
17、究?探究? 身高为身高为172172的女大学生的体重的女大学生的体重一定是一定是60.316kg60.316kg吗?如果不是吗?如果不是, ,其原因其原因是什么是什么? ?2022-4-25 如何描述两个变量之间线性相关关系如何描述两个变量之间线性相关关系的强弱?的强弱? 在在数学数学3中,我们学习了用相关系数中,我们学习了用相关系数r来衡量两个变量来衡量两个变量之间线性相关关系的方法。之间线性相关关系的方法。相关系数相关系数r12211()().()()niiinniiiixxyyxxyy0.75 1, 1,0.75, 0 25,0.25,rrr 当, 表 明 两 个 变 量 正 相 关 很
18、 强 ;当表 明 两 个 变 量 负 相 关 很 强 ;当.表 明 两 个 变 量 相 关 性 较 弱 。2022-4-25相关关系的测度(相关系数取值及其意义)2022-4-253.1回归分析的基回归分析的基本思想及其初步本思想及其初步应用(二)应用(二)高二数学高二数学 选修选修2-32022-4-25 比比必修必修3中中“回归回归”增加的内容增加的内容必修必修统计统计1. 画散点图画散点图2. 了解最小二乘法了解最小二乘法的思想的思想3. 求回归直线方程求回归直线方程ybxa4. 用回归直线方程用回归直线方程解决应用问题解决应用问题选修选修2 2- -3 3统计案例统计案例5.引入线性回
19、归模型引入线性回归模型ybxae6.了解模型中随机误差项了解模型中随机误差项e产生的原产生的原因因7.了解相关指数了解相关指数 R2 和模型拟合的效和模型拟合的效果之间的关系果之间的关系8.了解残差图的作用了解残差图的作用9.利用线性回归模型解决一类非线性利用线性回归模型解决一类非线性回归问题回归问题10. 正确理解分析方法与结果正确理解分析方法与结果2022-4-25回归分析的内容与步骤:回归分析的内容与步骤:统计检验通过后,最后是统计检验通过后,最后是利用回归模型,根据自变量去估计、利用回归模型,根据自变量去估计、预测因变量预测因变量。 回归分析通过一个变量或一些变量的变化解释回归分析通过
20、一个变量或一些变量的变化解释另一变量的变化。另一变量的变化。 其主要内容和步骤是:其主要内容和步骤是:首先根据理论和对问题的分析判断,首先根据理论和对问题的分析判断,将变量分为自变量和因变将变量分为自变量和因变量量;其次,设法其次,设法找出合适的数学方程式(即回归模型)找出合适的数学方程式(即回归模型)描述变量间描述变量间的关系;的关系;由于涉及到的变量具有不确定性,接着还要由于涉及到的变量具有不确定性,接着还要对回归模型进行对回归模型进行统计检验统计检验;2022-4-25例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示
21、。所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性好的线性相关关系,因此可以用线性回归方程刻画它们
22、之间的关系。回归方程刻画它们之间的关系。2022-4-25172.85849.0 xy分析:由于问题中分析:由于问题中要求根据身高预报要求根据身高预报体重,因此选取身体重,因此选取身高为自变量,体重高为自变量,体重为因变量为因变量学学身身 高高 1 17 72 2c cm m女女 大大生生 体体 重重y y = = 0 0. .8 84 49 91 17 72 2 - - 8 85 5. .7 71 12 2 = = 6 60 0. .3 31 16 6( (k kg g) )2.2.回归方程:回归方程:1. 散点图;散点图;本例中本例中, r=0.7980.75这表明体重与身高有很强的线性相
23、关关这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的。系,从而也表明我们建立的回归模型是有意义的。2022-4-25 探究:身高为探究:身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?吗?如果不是,你能解析一下原因吗? 答:身高为答:身高为172cm的女大学生的体重不一定的女大学生的体重不一定是是60.316kg,但一般可以认为她的体重接近于,但一般可以认为她的体重接近于60.316kg。 即,用这个回归方程不能给出每个身高为即,用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只能给出
24、她的女大学生的体重的预测值,只能给出她们平均体重的值。们平均体重的值。2022-4-25例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身
25、高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条某一条直线的附近,而不是在一条直线上,所以不能用一次函数直线上,所以不能用一次函数y=bx+a描述它们关系。描述它们关系。2022-4-25 我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示: y=bx+a+e, (3) 其中其中a和和b
26、为模型的未知参数,为模型的未知参数,e称为随机误差称为随机误差。y=bx+a+e,E(e)=0,D(e)= (4) 2.在线性回归模型在线性回归模型(4)中,随机误差中,随机误差e的方差的方差 越小,通过回越小,通过回归直线归直线 (5)2ybxa预报真实值预报真实值y的精度越高。随机误差是引起预报值的精度越高。随机误差是引起预报值 与真实值与真实值y之间的误差的原因之一,其大小取决于随机误差的方差。之间的误差的原因之一,其大小取决于随机误差的方差。y 另一方面,由于公式另一方面,由于公式(1)和和(2)中中 和和 为截距和斜率的估计值,为截距和斜率的估计值,它们与真实值它们与真实值a和和b之
27、间也存在误差,这种误差是引起预报值之间也存在误差,这种误差是引起预报值与真实值与真实值y之间误差的另一个原因。之间误差的另一个原因。 y 2022-4-25思考思考:产生随机误差项产生随机误差项e的原因是什么?的原因是什么?随机误差随机误差e e的来源的来源( (可以推广到一般):可以推广到一般):1、忽略了其它因素的影响:影响身高、忽略了其它因素的影响:影响身高 y 的因素不只的因素不只是体重是体重 x,可能还包括遗传基因、饮食习惯、生,可能还包括遗传基因、饮食习惯、生长环境等因素;长环境等因素;2、用线性回归模型近似真实模型所引起的误差;、用线性回归模型近似真实模型所引起的误差;3、身高、
28、身高 y 的观测误差。的观测误差。 以上三项误差越小,说明我们的回归模型的拟合以上三项误差越小,说明我们的回归模型的拟合效果越好。效果越好。2022-4-25函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy可以提供可以提供选择模型的准则选择模型的准则2022-4-25函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy 线性回归模型线性回归模型y=bx+a+e增加了随机误差项增加了随机误差项e,因变量,因变量y的值由自变量的值由自变量x和和随机误差项随机误差项e共同确定,即共同确定,即自变量自变量x只能解析
29、部分只能解析部分y的变化的变化。 在统计中,我们也把自变量在统计中,我们也把自变量x称为解析变量,因变量称为解析变量,因变量y称为预报变量。称为预报变量。所以,对于身高为所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为的女大学生,由回归方程可以预报其体重为 0.8497285.71260.316()ykg2022-4-2554.5kg 思考:思考:如何刻画预报变量(体重)的变化?这个变化在如何刻画预报变量(体重)的变化?这个变化在多大程度上与解析变量(身高)有关?在多大程度上与随多大程度上与解析变量(身高)有关?在多大程度上与随机误差有关?机误差有关? 假设身高和随机误差的不同
30、不会对体重产生任何影响,那么所有人假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。的体重将相同。在体重不受任何变量影响的假设下,设在体重不受任何变量影响的假设下,设8名女大学生的名女大学生的体重都是她们的平均值,即体重都是她们的平均值,即8个人的体重都为个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/cm87654321编号在散点图中,所有的点应该落在同一条在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如水平直线上,但是观测到的数据并非如此。此
31、。这就意味着这就意味着预报变量(体重)的值预报变量(体重)的值受解释变量(身高)或随机误差的影响受解释变量(身高)或随机误差的影响。对回归模型进行统计检验对回归模型进行统计检验2022-4-255943616454505748体重/kg170155165175170157165165身高/cm87654321编号 例如,编号为例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析变量(身高)和随机误差共同把这名学生的体重。解析变量(身高)和随机误差共同把这名学生的体重54.5kg“推推”到到了了61kg,相差,相差6.5kg
32、,所以,所以6.5kg是解析变量和随机误差的是解析变量和随机误差的组合效应组合效应。 编号为编号为3的女大学生的体重并也没有落在水平直线上,她的体重为的女大学生的体重并也没有落在水平直线上,她的体重为50kg。解析变量(身高)和随机误差共同把这名学生的体重从。解析变量(身高)和随机误差共同把这名学生的体重从50kg“推推”到了到了54.5kg,相差,相差-4.5kg,这时解析变量和随机误差的组合效应为,这时解析变量和随机误差的组合效应为-4.5kg。用这种方法可以对所有预报变量计算组合效应。用这种方法可以对所有预报变量计算组合效应。数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用数
33、学上,把每个效应(观测值减去总的平均值)的平方加起来,即用21()niiyy表示总的效应,称为表示总的效应,称为总偏差平方和总偏差平方和。在例在例1中,总偏差平方和为中,总偏差平方和为354。2022-4-255943616454505748体重/kg170155165175170157165165身高/cm87654321编号 那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差?(身高)?有多少来自于随机误差? 假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,假设随机误差对体重没有影
34、响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上。但是,在图中,数据点那么散点图中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上。并没有完全落在回归直线上。这些点散布在回归直线附近,所以一定是这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上随机误差把这些点从回归直线上“推推”开了开了。在例在例1中,残差平方和约为中,残差平方和约为128.361。 因此,数据点和它在回归直线上相应位置的差异因此,数据点和它在回归直线上相应位置的差异 是随机误是随机误差的效应,称差的效应,称 为为残差残差。)iiyy(iiieyy=例如,编号为
35、例如,编号为6的女大学生,计算随机误差的效应(残差)为:的女大学生,计算随机误差的效应(残差)为:61(0.84916585.712)6.627对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号21()niiiyy称为称为残差平方和残差平方和,它代表了随机误差的效应。它代表了随机误差的效应。表示为:表示为:2022-4-25 由于解析变量和随机误差的总效应(总偏差平方和)为由于解析变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为,而随机误差的效应为128.361,所以解析变量的效应,所以
36、解析变量的效应为为解析变量和随机误差的总效应(总偏差平方和)解析变量和随机误差的总效应(总偏差平方和)=解析变量的解析变量的效应(回归平方和)效应(回归平方和)+随机误差的效应(残差平方和)随机误差的效应(残差平方和)354-128.361=225.639 这个值称为这个值称为回归平方和。回归平方和。我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残 差 平 方 和。总 偏 差 平 方 和2221121()()()nniiiiiniiyyyyRyy总偏差平方和残差平方和回归平方和总偏差平方和总偏差
37、平方和2022-4-25离差平方和的分解 (三个平方和的意义)1.总偏差平方和(SST)反映因变量的 n 个观察值与其均值的总离差2.回归平方和(SSR)反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y 的取值变化,也称为可解释的平方和3.残差平方和(SSE)反映除 x 以外的其他因素对 y 取值的影响,也称为不可解释的平方和或剩余平方和2022-4-25样本决定系数(判定系数 )1.回归平方和占总偏差平方和的比例2221121()()()nniiiiiniiyyyyRyy总偏差平方和残差平方和回归平方和总偏差平方和总偏差平方和2022-
38、4-25显然,显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。表示解析变量对预报变量变化的贡献率。 R2越接近越接近1,表示回归的效果越好(因为,表示回归的效果越好(因为R2越接近越接近1,表示解析变量和,表示解析变量和预报变量的线性相关性越强)预报变量的线性相关性越强)。 如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较较R2的值来做出选择,即选取的值来做出选择,即选
39、取R2较大的模型作为这组数据的模型。较大的模型作为这组数据的模型。总的来说:总的来说:相关指数相关指数R2是度量模型拟合效果的一种指标。是度量模型拟合效果的一种指标。在线性模型中,它在线性模型中,它代表自变量刻画预报变量的能力代表自变量刻画预报变量的能力。我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残 差 平 方 和。总 偏 差 平 方 和2022-4-251354总计0.36128.361残差变量0.64225.639随机误差比例平方和来源表表1-3 从表从表3-1中可以看出,解析变量对总效
40、应约贡献了中可以看出,解析变量对总效应约贡献了64%,即,即R2 0.64,可以,可以叙述为叙述为“身高解析了身高解析了64%的体重变化的体重变化”,而随机误差贡献了剩余的,而随机误差贡献了剩余的36%。所以,。所以,身高对体重的效应比随机误差的效应大得多。身高对体重的效应比随机误差的效应大得多。我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残 差 平 方 和。总 偏 差 平 方 和2022-4-25表表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。列出了女大学生身高和体重的原始数
41、据以及相应的残差数据。 在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。性相关,是否可以用回归模型来拟合数据。残差分析与残差图的定义:残差分析与残差图的定义: 然后,我们可以通过残差然后,我们可以通过残差 来判断模型拟合的效果,判断来判断模型拟合的效果,判断原始数据中是否存在可疑数据,原始数据中是否存在可疑数据,这方面的分析工作称为残差分析这方面的分析工作称为残差分析。12,neee编号12345678身高/cm165165157170175165155170体重/kg485750
42、5464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382 我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为形称为残差图残差图。2022-4-25残差图的制作及作用。残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以若模型选择的正确,残差图中的点应该分布在以横轴
43、为心的带形区域横轴为心的带形区域;对于远离横轴的点,要特别注意对于远离横轴的点,要特别注意。2022-4-25身高与体重残差图异常点 错误数据 模型问题 几点说明:几点说明: 第一个样本点和第第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。 另外,残差点比较均匀地落在水平的带状区域中,
44、说明选用的模型计较另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。预报精度越高。2022-4-25例例2、在一段时间内,某中商品的价格、在一段时间内,某中商品的价格x元和需求量元和需求量Y件之间件之间的一组数据为:的一组数据为:求出求出Y对的回归直线方程,并说明拟合效果的好坏。对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753解:解:18,7.4,xy555221111660,327,620,iiiii
45、iixyx y7.41.151828.1.a1.1528.1.yx 回 归 直 线 方 程 为 :51522155iiiiix yx ybxx26205187.41.15.1660518 2022-4-25例例2、在一段时间内,某中商品的价格、在一段时间内,某中商品的价格x元和需求量元和需求量Y件之间件之间的一组数据为:的一组数据为:求出求出Y对的回归直线方程,并说明拟合效果的好坏。对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753列出残差表为列出残差表为521()iiiyy0.3,521()iiyy53.2,5221521()1()iiiiiyyRyy0
46、.994因而,拟合效果较好。因而,拟合效果较好。iiyyiyy00.3-0.4-0.10.24.62.6-0.4-2.4-4.4案例案例 一只红铃虫的产卵数一只红铃虫的产卵数y和温度和温度x有关。现收有关。现收集了集了7组观测数据列于表中:组观测数据列于表中:(1 1)试建立产卵数)试建立产卵数y y与温度与温度x x之间的回归方程;并之间的回归方程;并预测温度为预测温度为2828o oC C时产卵数目。时产卵数目。(2 2)你所建立的模型中温度在多大程度上解释了)你所建立的模型中温度在多大程度上解释了产卵数的变化?产卵数的变化? 温度温度xoC21232527293235产卵数产卵数y/个个
47、711212466115325非线性回归问题非线性回归问题假设线性回归方程为假设线性回归方程为 :=bx+a选选 模模 型型由计算器得:线性回归方程为由计算器得:线性回归方程为y=y=19.8719.87x x-463.73-463.73 相关指数相关指数R R2 2= =r r2 20.8640.8642 2=0.7464=0.7464估计参数估计参数 解:选取气温为解释变量解:选取气温为解释变量x x,产卵数,产卵数 为预报变量为预报变量y y。选变量选变量所以,一次函数模型中温度解释了所以,一次函数模型中温度解释了74.64%的产卵数变化。的产卵数变化。探索新知探索新知画散点图画散点图0
48、50100150200250300350036912151821242730333639方案1分析和预测分析和预测当当x=28时,时,y =19.8728-463.73 93一元线性模型一元线性模型奇怪?奇怪?9366 ?模型不好?模型不好? y=bx2+a 变换变换 y=bt+a非线性关系非线性关系 线性关系线性关系方案2问题问题选用选用y=bx2+a ,还是,还是y=bx2+cx+a ?问题问题3 产卵数产卵数气气温温问题问题2如何求如何求a、b ?合作探究合作探究 t=x2二次函数模型二次函数模型方案2解答平方变换平方变换:令令t=xt=x2 2,产卵数,产卵数y y和温度和温度x x之
49、间二次函数模型之间二次函数模型y=bxy=bx2 2+a+a就转化为产卵数就转化为产卵数y y和温度的平方和温度的平方t t之间线性回归模型之间线性回归模型y=bt+ay=bt+a温度温度21232527293235温度的平方温度的平方t44152962572984110241225产卵数产卵数y/个个711212466115325作散点图,并由计算器得:作散点图,并由计算器得:y y和和t t之间的线性回归方程为之间的线性回归方程为y=y=0.3670.367t t-202.543-202.543,相关指数,相关指数R R2 2=0.802=0.802将将t=xt=x2 2代入线性回归方程得
50、:代入线性回归方程得: y= y=0.3670.367x x2 2 -202.543 -202.543当当x x=28=28时时,y y=0.367=0.36728282 2- -202.5485202.5485,且,且R R2 2=0.802=0.802,所以,二次函数模型中温度解所以,二次函数模型中温度解释了释了80.2%80.2%的产卵数变化。的产卵数变化。t问题问题 变换变换 y=bx+a非线性关系非线性关系 线性关系线性关系21c xyc e问题问题如何选取指数函数的底如何选取指数函数的底?产卵数产卵数气气温温指数函数模型指数函数模型方案3合作探究合作探究对数对数方案3解答温度温度x