嵌入式系统网络接口课件.ppt

上传人(卖家):三亚风情 文档编号:2518771 上传时间:2022-04-28 格式:PPT 页数:80 大小:449.50KB
下载 相关 举报
嵌入式系统网络接口课件.ppt_第1页
第1页 / 共80页
嵌入式系统网络接口课件.ppt_第2页
第2页 / 共80页
嵌入式系统网络接口课件.ppt_第3页
第3页 / 共80页
嵌入式系统网络接口课件.ppt_第4页
第4页 / 共80页
嵌入式系统网络接口课件.ppt_第5页
第5页 / 共80页
点击查看更多>>
资源描述

1、第第7章章 嵌入式系统网络接口嵌入式系统网络接口7.1 以太网接口以太网接口n嵌入式系统通常使用的以太网协议是IEEE802.3标准。从硬件的角度看,802.3模型层间结构如图7.1.1所示,以太网接口电路主要由媒质接入控制MAC控制器和物理层接口(Physical Layer,PHY)两大部分构成。图7.1.1 802.3模型层间结构n1传输编码传输编码n在802.3版本的标准中,没有采用直接的二进制编码(即用0V表示“0”,用5V表示“1”),而是采用曼彻斯特编码(Manchester Encoding)或者差分曼彻斯特编码(Differential Manchester Encoding

2、),不同编码形式如图7.1.2所示。图7.1.2 不同编码形式n其中:曼彻斯特编码的规律是:每位中间有一个电平跳变,从高到低的跳变表示为“0”,从低到高的跳变表示为“1”。n差分曼彻斯特编码的规律是:每位的中间也有一个电平跳变,但不用这个跳变来表示数据,而是利用每个码元开始时有无跳变来表示“0”或“1”,有跳变表示“0”,无跳变表示“1”。n曼彻斯特编码和差分曼彻斯特编码相比,前者编码简单,后者能提供更好的噪声抑制性能。在802.3系统中,采用曼彻斯特编码,其高电平为+0.85V,低电平信号为-0.85V,这样指令信号电压仍然是0V。n2802.3Mac层的帧层的帧n802.3 Mac层的以太

3、网的物理传输帧如表7.1.1所示。n表7.1.1 802.3帧的格式n PR:同步位,用于收发双方的时钟同步,同时也指明了传输的速率,是56位的的二进制数101010101010,最后2位是10。 SD:分隔位,表示下面跟着的是真正的数据而不是同步时钟,为8位的10101011。 DA:目的地址,以太网的地址为48位(6个字节)二进制地址,表明该帧传输给哪个网卡。如果为FFFFFFFFFFFF,则是广播地址。广播地址的数据可以被任何网卡接收到。 SA:源地址,48位,表明该帧的数据是哪个网卡发的,即发送端的网卡地址,同样是6个字节。n TYPE:类型字段,表明该帧的数据是什么类型的数据,不同协

4、议的类型字段不同。如:0800H表示数据为IP包,0806H表示数据为ARP包,814CH是SNMP包,8137H为IPX/SPX包。小于0600H的值是用于IEEE802的,表示数据包的长度。n DATA:数据段,该段数据不能超过1500B。因为以太网规定整个传输包的最大长度不能超过1514E(14B为DA,SA,TYPE)。n PAD:填充位。由于以太网帧传输的数据包最小不能小于60B,除去(DA、SA、TYPE的14B),还必须传输46B的数据,当数据段的数据不足46B时,后面通常是补0(也可以补其他值)。n FCS:32位数据校验位。32位的CRC校验,该校验由网卡自动计算,自动生成,

5、自动校验,自动在数据段后面填入。不需要软件管理。n 通常,PR、SD、PAD、FCS这几个数据段都是网卡(包括物理层和Mac层的处理)自动产生的,剩下的DA、SA、TYPE、DATA这4个段的内容是由上层的软件控制的。n3以太网数据传输的特点以太网数据传输的特点n 所有数据位的传输由低位开始,传输的位流是用曼彻斯特编码。n 以太网是基于冲突检测的总线复用方法,冲突退避算法是由硬件自动执行的。n 以太网传输的数据段的长度,DA+SA+TYPE+DATA+PAD最小为60B,最大为1514B。n 通常的以太网卡可以接收3种地址的数据,一个是广播地址,一个是多播地址(或者叫组播地址,在嵌入式系统中很

6、少用到),一个是它自己的地址。但有时,用于网络分析和监控,网卡也可以设置为接收任何数据包。n 任何两个网卡的物理地址都是不一样的,是世界上唯一的,网卡地址由专门机构分n配。不同厂家使用不同地址段,同一厂家的任何两个网卡的地址也是唯一的。根据网卡的地址段(网卡地址的前3个字节)可以知道网卡的生产厂家。n7.1.2 嵌入式以太网接口的实现方法n在嵌入式系统中增加以太网接口,通常有如下两种方法实现:n(1)嵌入式处理器网卡芯片n这种方法只要把以太网芯片连接到嵌入式处理器的总线上即可。此方法通用性强,对嵌入式处理器没有特殊要求,不受处理器的限制,但是,嵌入式处理器和网络数据交换通过外部总线(通常是并行

7、总线)交换数据,速度慢,可靠性不高,电路板走线复杂。目前常见的以太网接口芯片,如CS8900、RTL8019/8029/8039、DM9008及DWL650无线网卡等。n(2)带有以太网接口的嵌入式处理器n带有以太网接口的嵌入式处理器通常是面向网络应用而设计的,要求嵌入式处理器有通用的网络接口(比如:MII接口),处理器和网络数据交换通过内部总线,速度快。n7.1.3 在嵌入式系统中主要处理的以太网协议nTCP/IP是一个分层的协议,包含有用于层、传输层、网络层、数据链路层、物理层等。每一层实现一个明确的功能,对应一个或者几个传输协议。每层相对于它的下层都作为一个独立的数据包来实现。典型的分层

8、和每层上的协议如表7.1.2所示。n表7.1.2 TCP/IP协议的典型分层和协议n1ARP(Address Resolation Protocol,地址解析协议),地址解析协议)n网络层用32位的地址来标识不同的主机(即IP地址),而链路层使用48位的物理(MAC)地址来标识不同的以太网或令牌环网接口。只知道目的主机的IP地址并不能发送数据帧给它,必须知道目的主机网络接口的物理地址才能发送数据帧。nARP的功能就是实现从IP地址到对应物理地址的转换。源主机发送一份包含目的主机IP地址的ARP请求数据帧给网上的每个主机,称作ARP广播,目的主机的ARP收到这份广播报文后,识别出这是发送端在询问

9、它的IP地址,于是发送一个包含目的主机IP地址及对应的物理地址的ARP回答给源主机。n为了加快ARP协议解析的数据,每台主机上都有一个ARP cache存放最近的IP地址到硬件地址之间的映射记录。其中每一项的生存时间(一般为20分钟),这样当在ARP的生存时间之内连续进行ARP解析的时候,不需要反复发送ARP请求了。n2ICMP(Internet Control Messages Protocol,网络控制,网络控制报文协议)报文协议)nICMP是IP层的附属协议,IP层用它来与其他主机或路由器交换错误报文和其他重要控制信息。ICMP报文是在IP数据包内部被传输的。在Linux或者Window

10、s中,两个常用的网络诊断工具ping和traceroute(Windows下是Tracert),其实就是ICMP协议。n3IP (Internet Protocol,网际协议),网际协议)nIP工作在网络层,是TCP/IP协议族中最为核心的协议。所有的TCP、UDP、ICMP及IGMP数据都以IP数据包格式传输(IP封装在IP数据包中)。IP数据包最长可达65535字节,其中报头占32位。还包含各32位的源IP地址和32位的目的IP地址。nTTL(time-to-live,生存时间字段)指定了IP数据包的生存时间(数据包可以经过的最多路由器数)。TTL的初始值由源主机设置,一旦经过一个处理它的

11、路由器,它的值就减去1。当该字段的值为0时,数据包就被丢弃,并发送ICMP报文通知源主机重发。nIP提供不可靠、无连接的数据包传送服务,高效、灵活。n不可靠(unreliable)的意思是它不能保证IP数据包能成功地到达目的地。如果发生某种错误,IP有一个简单的错误处理算法:丢弃该数据包,然后发送ICMP消息报给信源端。任何要求的可靠性必须由上层来提供(如TCP)。n无连接(connectionless )的意思是IP并不维护任何关于后续数据包的状态信息。每个数据包的处理是相互独立的。IP数据包可以不按发送顺序接收。如果一信源向相同的信宿发送两个连续的数据包(先是A,然后是B),每个数据包都是

12、独立地进行路由选择,可能选择不同的路线,因此B可能在A到达之前先到达。nIP的路由选择:源主机 IP接收本地TCP、UDP、ICMP、GMP的数据,生成IP数据包,如果目的主机与源主机在同一个共享网络上,那么IP数据包就直接送到目的主机上。否则就把数据包发往一默认的路由器上,由路由器来转发该数据包。最终经过数次转发到达目的主机。IP路由选择是逐跳(hop-by-hop)进行的。所有的IP路由选择只为数据包传输提供下一站路由器的IP地址。n4TCP(Transfer Control Protocol,传输控制协议),传输控制协议)nTCP协议是一个面向连接的可靠的传输层协议。TCP为两台主机提供

13、高可靠性的端到端数据通信。它所做的工作包括:n 发送方把应用程序交给它的数据分成合适的小块,并添加附加信息(TCP头),包括顺序号,源、目的端口,控制、纠错信息等字段,称为TCP数据包。并将TCP数据包交给下面的网络层处理。n 接受方确认接收到的TCP数据包,重组并将数据送往高层。n5UDP(User Datagram Protocol,用户数据包协议),用户数据包协议)nUDP协议是一种无连接不可靠的传输层协议。它只是把应用程序传来的数据加上UDP头(包括端口号,段长等字段),作为UDP数据包发送出去,但是并不保证它们能到达目的地。可靠性由应用层来提供。n因为协议开销少,和TCP协议相比,U

14、DP更适用于应用在低端的嵌入式领域中。很多场合如网络管理SNMP,域名解析DNS,简单文件传输协议TFTP,大都使用UDP协议。n6. 端口端口 nTCP和UDP采用16位的端口号来识别上层的TCP用户,即上层应用协议,如FTP和TELNET等。常见的TCP/IP服务都用众所周知的1255之间的端口号。例如FTP服务的TCP端口号都是21,Telnet服务的TCP端口号都是23。TFTP(简单文件传输协议)服务的UDP端口号都是69。2561023之间的端口号通常都是提供一些特定的UNIX服务。TCP/IP临时端口分配10245 000之间的端口号。n7.1.4 网络编程接口nBSD套接字(B

15、SD Sockets)使用的最广泛的网络程序编程方法,主要用于应用程序的编写,用于网络上主机与主机之间的相互通信。n很多操作系统都支持BSD套接字编程。例如,UNIX、Linux、VxWorks、Windows的Winsock基本上是来自BSD Sockets。n套接字(Sockets)分为Stream Sockets和Data Sockets。Stream Sockets是可靠性的双向数据传输,对应使用TCP协议传输数据;Data Sockets是不可靠连接,对应使用UDP协议传输数。n下面给出一个使用套接字接口的UDP通信的流程。nUDP服务器端和一个UDP客户端通信的程序过程:n(1)创

16、建一个Socket:nsFd =socket(AF_INET,SOCK_DGRAM,0)n(2)把Socket和本机的IP,UDP口绑定:nbind (sFd,(struct sockaddr*)& serverAddr,sockAddrSize)n(3)循环等待,接收(recvfrom)或者发送(sendfrom)信息。n(4)关闭Socket,通信终止:nclose(sFd)n7.1.5 以太网的物理层接口及编程n大多数ARM都内嵌一个以太网控制器,支持媒体独立接口(Media Independent Interface MII)和带缓冲DMA接口(Buffered DMA Interfa

17、ce,BDI),可在半双工或全双工模式下提供10M/100Mbps的以太网接入。在半双工模式下,控制器支持CSMA/CD协议;在全双工模式下,支持IEEE802.3MAC控制层协议。ARM内部虽然包含了以太网MAC控制,但并未提供物理层接口,因此,需外接一片物理层芯片以提供以太网的接入通道。n常用的单口10M/100Mbps高速以太网物理层接口器件均提供MII接口和传统7线制网络接口,可方便地与ARM接口。以太网物理层接口器件主要功能一般包括:物理编码子层、物理媒体附件、双绞线物理媒体子层、10BASE-TX编码解码器和双绞线媒体访问单元等。如CS8900、RTL8019/8029/8039等

18、。nCS8900A是Cirrus Logic公司生产的16位以太网控制器,芯片内嵌片内RAM10BASE-T收发滤波器,直接ISA总线接口。该芯片的物理层接口、数据传输模式和工作模式等都能根据需要而动态调整,通过内部寄存器的设置来适应不同的应用环境。nCS8900A采用3V供电电压,最大工作电流55mA,具有全双工通信方式,可编程发送功能,数据碰撞自动重发,自动打包及生成CRC校验码,可编程接收功能,自动切换于DMA和片内RAM,提前产生中断便于数据帧预处理,数据流可降低CPU消耗,自动阻断错误包,可跳线控制EEPROM功能,启动编程支持无盘系统,边沿扫描和回环测试,待机和睡眠模式,支持广泛的

19、软件驱动,工业级温度范围,LED指示连接状态和网络活动情况等特点。采用TQFP-100封装。CS8900A内部结构方框图如图7.1.3所示。图7.1.3 CS8900A内部结构方框图n1CS8900A工作原理工作原理nCS8900A有两种工作模式:和I/O模式。当配置成MEMORY MODE模式操作时,CS8900A的内部寄存器和帧缓冲区映射到主机内存中连续的4KB的块中,主机可以通过这个块直接访问CS8900A的内部寄存器和帧缓冲区。MEMORY 模式需要硬件上多根地址线和网卡相连。而在I/O MODE模式,对任何寄存器操作均要通过I/O端口0写入或读出。I/O MODE模式在硬件上实现比较

20、方便,而且这也是芯片的默认模式。在I/O模式下,PacketPage存储器被映射到CPU的8个16位的I/O端口上。在芯片被加电后,I/O基地址的默认值被置为300H。n使用CS8900A作为以太网的物理层接口,在收到由主机发来的数据报后(从目的地址域到数据域),侦听网络线路。如果线路忙,它就等到线路空闲为止,否则,立即发送该数据帧。在发送过程中,首先它添加以太网帧头(包括前导字段和帧开始标志),然后生成CRC校验码,最后将此数据帧发送到以太网上。n在接收过程中,它将从以太网收到的数据帧在经过解码、去帧头和地址检验等步骤后缓存在片内。在CRC校验通过后,它会根据初始化配置情况,通知主机CS89

21、00A收到了数据帧,最后,用某种传输模式(FO模式、Memory模式、DMA模式)传到主机的存储区中。n2CS 8900A引脚端和功能引脚端和功能nCS 8900A的ISA总线接口引脚端和功能如表7.1.3所示,EEPROM和引导编程接口引脚端和功能如表7.1.4所示,IOBASE-T接口引脚端和功能如表7.1.5所示,附加单元接口AUD引脚端和功能如表7.1.6所示,通用引脚端和功能如表7.1.7所示。引脚类型功能SA0:19I地址总线SD0:15I/O双向数据总线,三态输出RESETI复位输入端,高电平有效(至少保持400ns)AEN I地址使能,高电平有效MEMRI存储器读信号,低电平有

22、效MEMWI存储器写信号,低电平有效MEMCS 16O存储器16位选择信号,OC(集电极开路)输出REFRESHI刷新信号,低电平有效。当REFRESH为低电平时,MEMR,MEMW,IOR,IOW,DMACK0,DMACKl和DMACK2都被忽略表7.1.3 ISA总线接口引脚端和功能IORII/O读信号,低电平有效IOWII/O写信号,低电平有效IOCS 16I16位I/O片选信号,低电平有效IOCHRDYOI/O通道就绪信号,OC(集电极开路)输出SBHEI系统总线高位使能信号,低电平有效INTRQ0:2O中断请求信号,三态输出DMARQ0:2ODMA请求信号,三态输出DMACK0:2I

23、DMA应答信号,低电平有效CHIPSELI片选信号,低电平有效表7.1.4 EEPROM和引导编程接口引脚端和功能引脚类型功能EESKIEEPROM时钟输入信号EECSIEEPROM片选输入信号,低电平有效EEDataINIEEPROM数据输入,内部上拉ELCSI外部逻辑片选信号,内部上拉EEDataOUTOEEPROM数据输出CSOUTO外部引导编程选择信号输出,低电平有效表7.1.5 IOBASE-T接口引脚端引脚类型功能TXD+/TXDO数据发送,差分对管输出RXD/RXDI数据接收,差分对管输入表7.1.6 附加单元接口引脚端和功能引脚类型功能DO/DOOAUI数据输出,差分对管输出D

24、I/DIIAUI数据输入,差分对管输入CI/CIIAUI振动输入,差分对管输入表7.1.7 通用引脚端和功能引脚类型功能XTAL 1:2I/O晶体振荡器输入输出SLEEPI硬件睡眠控制输入信号,低电平有效,内部上拉LINKLED/HCOO线路正常输出信号或主控制器输出0信号,低电平有效,OC(集电极开路)输出BSTAUTS/HC1O总线状态输出信号或主控制器输出1信号,低电平有效,OC(集电极开路)输出LANLEDO网络状态指示输出信号,OC(集电极开路)输出TESTI测试输入使能信号,低电平有效,内部上拉RESI基准电阻输入端 DVDD 1:4I数字电路电源DVSS1:4I数字电路地AVDD

25、 1:4I模拟电路电源AVSS1:4I模拟电路地3电路连接电路连接采用CS 8900A与S3C2410A连接构成的以太网接口电路如图7.1.4所示。n4CS8900A的以太网接口驱动程序的以太网接口驱动程序于明于明n(1)初始化函数n初始化函数完成设备的初始化功能,由数据结构device中的init函数指针来调用。加载网络驱动模块后,就会调用初始化过程。首先通过检测物理设备的硬件特征来检测网络物理设备是否存在,之后配置设备所需要的资源。比如,中断。这些配置完成之后就要构造设备的数据结构device,用检测到的数据初始化device中的相关变量,最后向Linux内核中注册该设备并申请内存空间。函

26、数定义为:nstatic int _init init_cs8900a_s3c2410(void)n n struct net_local *lp;n int ret = 0;n dev_cs89x0.irq = irq;n dev_cs89x0.base_addr = io;n dev_cs89x0.init = cs89x0_probe;n dev_cs89x0.priv = kmalloc(sizeof(struct net_local), GFP_KERNEL);nif (dev_cs89x0.priv = = 0) nn printk(KERN_ERR cs89x0.c: Out o

27、f memory.n);n return -ENOMEM;n n memset(dev_cs89x0.priv, 0, sizeof(struct net_local);n nlp = (struct net_local *)dev_cs89x0.priv;n request_region(dev_cs89x0.base_addr, NETCARD_IO_EXTENT, cs8900a);nspin_lock_init(&lp-lock);n /* boy, theyd better get these right */n if (!strcmp(media, rj45)n lp-adapte

28、r_cnf = A_CNF_MEDIA_10B_T | A_CNF_10B_T;n else if (!strcmp(media, aui)n lp-adapter_cnf = A_CNF_MEDIA_AUI | A_CNF_AUI;n else if (!strcmp(media, bnc)n lp-adapter_cnf = A_CNF_MEDIA_10B_2 | A_CNF_10B_2;n elsen lp-adapter_cnf = A_CNF_MEDIA_10B_T | A_CNF_10B_T;nif (duplex= = 1)n lp-auto_neg_cnf = AUTO_NEG

29、_ENABLE;n if (io = = 0) n printk(KERN_ERR cs89x0.c: Module autoprobing not allowed.n);n printk(KERN_ERR cs89x0.c: Append io=0 xNNNn);n ret = -EPERM;n goto out;n n if (register_netdev(&dev_cs89x0) != 0) n printk(KERN_ERR cs89x0.c: No card found at 0 x%xn, io);n ret = -ENXIO;n goto out;n nout:n if (re

30、t)n kfree(dev_cs89x0.priv);n return ret;nn在这个网络设备驱动程序中,设备的数据结构device就是dev_cs89x0。探测网络物理设备是否存在,利用cs89x0_probe函数实现,通过调用register_netdrv(struct net_device*dev)函数进行注册。n与init函数相对应的cleanup函数在模块卸载时运行,主要完成资源的释放工作,如取消设备注册、释放内存、释放端口等。函数定义为:nstatic void _exit cleanup_cs8900a_s3c2410(void) n if (dev_cs89x0.priv

31、!= NULL) n /* Free up the private structure, or leak memory :-) */n unregister_netdev(&dev_cs89x0);n outw(PP_ChipID, dev_cs89x0.base_addr + ADD_PORT);n kfree(dev_cs89x0.priv);n dev_cs89x0.priv = NULL;/* gets re-allocated by cs89x0_probe1 */n /* If we dont do this, we cant re-insmod it later. */n rel

32、ease_region(dev_cs89x0.base_addr, NETCARD_IO_EXTENT);n nn(2)打开函数n打开函数在网络设备驱动程序中是在网络设备被激活时调用,即设备状态由down至up。函数定义为:nstatic int net_open(struct net_device *dev)nn struct net_local *lp = (struct net_local *)dev-priv;nint ret;n writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL) & ENABLE_IRQ);n ret = request

33、_irq(dev-irq, &net_interrupt, SA_SHIRQ, cs89x0, dev);n if (ret) n printk(%s: request_irq(%d) failedn, dev-name, dev-irq);n goto bad_out;nnif (lp-chip_type = = CS8900)nwritereg(dev, PP_CS8900_ISAINT, 0);nelse nwritereg(dev, PP_CS8920_ISAINT, 0);nwritereg(dev, PP_BusCTL, MEMORY_ON);nlp-linectl = 0;n w

34、ritereg(dev, PP_LineCTL,n readreg(dev, PP_LineCTL) | SERIAL_RX_ON | SERIAL_TX_ON);nlp-rx_mode = 0;n writereg(dev, PP_RxCTL, DEF_RX_ACCEPT);n lp-curr_rx_cfg = RX_OK_ENBL | RX_CRC_ERROR_ENBL;nif (lp-isa_config & STREAM_TRANSFER) nlp-curr_rx_cfg |= RX_STREAM_ENBL;nwritereg(dev, PP_RxCFG, lp-curr_rx_cfg

35、);n writereg(dev, PP_TxCFG,n TX_LOST_CRS_ENBL | TX_SQE_ERROR_ENBL | TX_OK_ENBL |n TX_LATE_COL_ENBL | TX_JBR_ENBL |n TX_ANY_COL_ENBL | TX_16_COL_ENBL);n writereg(dev, PP_BufCFG,n READY_FOR_TX_ENBL | RX_MISS_COUNT_OVRFLOW_ENBL |n TX_COL_COUNT_OVRFLOW_ENBL | TX_UNDERRUN_ENBL);nwritereg(dev, PP_BusCTL,

36、readreg(dev, PP_BusCTL) | ENABLE_IRQ);n enable_irq(dev-irq);n netif_start_queue(dev);n DPRINTK(1, cs89x0: net_open() succeededn);n return 0;nbad_out:n return ret;n n打开函数中对寄存器操作使用了两个函数:readreg和writereg。readreg函数用来读取寄存器内容,writereg函数用来写寄存器。函数定义为:ninline int readreg(struct net_device *dev, int portno)nn

37、outw(portno, dev-base_addr + ADD_PORT);nreturn inw(dev-base_addr + DATA_PORT);nninline void writereg(struct net_device *dev, int portno, int value) nnoutw(portno, dev-base_addr + ADD_PORT);noutw(value, dev-base_addr + DATA_PORT);nn(3)关闭函数n关闭函数释放资源减少系统负担,设备状态有up转为down时被调用。函数定义为:nstatic int net_close(

38、struct net_device *dev)nnnetif_stop_queue(dev);nwritereg(dev, PP_RxCFG, 0);nwritereg(dev, PP_TxCFG, 0);nwritereg(dev, PP_BufCFG, 0);nwritereg(dev, PP_BusCTL, 0);nfree_irq(dev-irq, dev);n/* Update the statistics here. */nreturn 0;nn(4)发送函数n首先,在网络设备驱动加载时,通过device域中的init函数指针调用网络设备的初始化函数对设备进行初始化,如果操作成功,

39、就可以通过device域中的open函数指针调用网络设备的打开函数打开设备,再通过device域中的包头函数指针hard_header来建立硬件包头信息。最后,通过协议接口层函数dev_queue_xmit调用device域中的hard_start_xmit函数指针来完成数据包的发送。n如果发送成功,hard_start_xmit释放sk_buff,返回0。如果设备暂时无法处理,比如,硬件忙,则返回l。此时如果dev-tbusy置为非0,则系统认为硬件忙,要等到dev-tbusy置0以后才会再次发送。tbusy的置0任务一般由中断完成。硬件在发送结束会产生中断,这时可以把tbusy置0,然后用

40、mark_bh()调用通知系统可以再次发送。n在CS8900A驱动程序中,网络设备的传输函数dev-hard_start_xmit定义为net_send_ packet:nstatic int net_send_packet(struct sk_buff *skb, struct net_device *dev)nn struct net_local *lp = (struct net_local *)dev-priv;n writereg(dev, PP_BusCTL, 0 x0);n writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL) | EN

41、ABLE_IRQ);n DPRINTK(3, %s: sent %d byte packet of type %xn,n dev-name, skb-len,n (skb-dataETH_ALEN+ETH_ALEN dataETH_ALEN+ETH_ALEN+1);n spin_lock_irq(&lp-lock);n netif_stop_queue(dev);n /* initiate a transmit sequence */n writeword(dev, TX_CMD_PORT, lp-send_cmd);n writeword(dev, TX_LEN_PORT, skb-len)

42、;n /* Test to see if the chip has allocated memory for the packet */nif (readreg(dev, PP_BusST) & READY_FOR_TX_NOW) = 0)nn spin_unlock_irq(&lp-lock);n DPRINTK(1, cs89x0: Tx buffer not free!n);n return 1;n n /* Write the contents of the packet */n writeblock(dev, skb-data, skb-len);n spin_unlock_irq(

43、&lp-lock);n dev-trans_start = jiffies;n dev_kfree_skb (skb); n return 0;n n(5)中断处理和接收函数n网络设备接收数据通过中断实现,当数据收到后,产生中断,在中断处理程序中驱动程序申请一块sk_buff(skb),从硬件读出数据放置到申请好的缓冲区里。接下来,填充sk_buff中的一些信息。处理完后,如果是获得数据包,则执行数据接收子程序,该函数被中断服务程序调用。函数定义:nstatic void net_rx(struct net_device *dev) nn struct net_local *lp = (str

44、uct net_local *)dev-priv;n struct sk_buff *skb;n int status, length;n int ioaddr = dev-base_addr;n status = inw(ioaddr + RX_FRAME_PORT);nif (status & RX_OK) = 0)nn count_rx_errors(status, lp);n return;n n length = inw(ioaddr + RX_FRAME_PORT);n /* Malloc up new buffer. */n skb = dev_alloc_skb(length

45、+ 2);nif (skb = NULL) nn lp-stats.rx_dropped+;n return;n n skb_reserve(skb, 2),/* longword align L3 header */n skb-len = length;n skb-dev = dev;n readblock(dev, skb-data, skb-len);n DPRINTK(3, %s: received %d byte packet of type %xn,n dev-name, length,n (skb-dataETH_ALEN+ETH_ALENdataETH_ALEN+ETH_ALE

46、N+1);n skb-protocol=eth_type_trans(skb,dev);n netif_rx(skb);n dev-last_rx = jiffies;n lp-stats.rx_packets+;n lp-stats.rx_bytes += length;n n在net_rx()函数中调用netif_rx()把数据传送到协议层。netif_rx()函数把数据放入处理队列,然后返回,真正的处理是在中断返回以后,这样可以减少中断时间。调用netif_rx()后,驱动程序不能再存取数据缓冲区skb。netif_rx()函数在net/core/dev.c中定义为:nint netif

47、_rx(struct sk_buff *skb)nnint this_cpu = smp_processor_id();nstruct softnet_data *queue;nunsigned long flags;nif (skb-stamp.tv_sec = = 0) ndo_gettimeofday(&skb-stamp);nqueue = &softnet_datathis_cpu;nlocal_irq_save(flags);nnetdev_rx_statthis_cpu.total+;nif (queue-input_pkt_queue.qlen input_pkt_queue.

48、qlen) nnif (queue-throttle)goto drop;nenqueue:ndev_hold(skb-dev);n_skb_queue_tail(&queue-input_pkt_queue,skb);ncpu_raise_softirq(this_cpu, NET_RX_SOFTIRQ);nlocal_irq_restore(flags);n#ifndef OFFLINE_SAMPLEnget_sample_stats(this_cpu);n#endifnreturn softnet_datathis_g_level;n nif (queue-throttle)nnqueu

49、e-throttle = 0;n#ifdef CONFIG_NET_HW_FLOWCONTROLnif (atomic_dec_and_test(&netdev_dropping) netdev_wakeup();n#endifnngoto enqueue;nnif (queue-throttle = 0)nnqueue-throttle = 1;nnetdev_rx_statthis_cpu.throttled+;n#ifdef CONFIG_NET_HW_FLOWCONTROLnatomic_inc(&netdev_dropping);n#endifnndrop:netdev_rx_sta

50、tthis_cpu.dropped+;nlocal_irq_restore(flags);nkfree_skb(skb);nreturn NET_RX_DROP; nn中断函数net_interrupt在打开函数中申请,中断发生后,首先驱动中断管脚为高电平,然后主机读取CS8900A中的中断申请序列ISQ值,以确定事件类型,根据事件类型做出响应。函数定义为:nstatic void net_interrupt(int irq, void *dev_id, struct pt_regs * regs)nn struct net_device *dev = dev_id;n struct net_

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(嵌入式系统网络接口课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|