1、14.3.1 提公因式法第十四章 整式的乘法与因式分解14.3 因式分解学习目标1.理解因式分解的意义和概念及其与整式乘法的区 别和联系.(重点)2.理解并掌握提公因式法并能熟练地运用提公因式 法分解因式.(难点)导入新课导入新课问题引入如图,一块菜地被分成三部分,你能用不同的方式表示这块草坪的面积吗?abcm方法一:m(a+b+c)方法二:ma+mb+mcm(a+b+c)=ma+mb+mc整式乘法?1.运用整式乘法法则或公式填空:(1) m(a+b+c)= ; (2) (x+1)(x-1)= ;(3) (a+b)2 = .ma+mb+mcx2 -1a2 +2ab+b2讲授新课讲授新课因式分解
2、一合作探究2.根据等式的性质填空:(1) ma+mb+mc=( )( )(2) x2 -1 =( )( ) (3) a2 +2ab+b2 =( )2m a+b+cx+1 x-1a+b 都是多项式化为几个整式的积的形式比一比,这些式子有什么共同点?u定义: 把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.x2-1 (x+1)(x-1)因式分解整式乘法x2-1 = (x+1)(x-1)等式的特征:左边是多项式,右边是几个整式的乘积想一想:整式乘法与因式分解有什么关系?是互为相反的变形,即典例精析例1 下列从左到右的变形中是因式分解的有()
3、x2y21(xy)(xy)1;x3xx(x21);(xy)2x22xyy2;x29y2(x3y)(x3y)A1个 B2个 C3个 D4个B方法总结:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式在下列等式中,从左到右的变形是因式分解的有 ,不是的,请说明为什么? 1x 辨一辨:am+bm+c=m(a+b)+c24x2y=3x 8xyx2-1=(x+1)(x-1)(2x+1)2=4x2+4x+1x2+x=x2(1+ )2x+4y+6z=2(x+2y+3z)最后不是积的运算因式分解的对象是多项式,是整
4、式乘法每个因式必须是整式pa+pb+pc用提公因式法分解因式二 多项式中各项都含有的相同因式,叫作这个多项式的公因式.相同因式p问题1 观察下列多项式,它们有什么共同特点?合作探究 x2x相同因式x 一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法. ( a+b+c )pa+ pb +pcp= 找 3x 2 6 xy 的公因式.系数:最大公约数3字母:相同的字母x 所以公因式是3x指数:相同字母的最低次数1问题2 如何确定一个多项式的公因式?u正确找出多项式的公因式的步骤:3.定指数:相同字母的指数取各项中
5、最小的一个,即字母的最低次数. 1.定系数:公因式的系数是多项式各项系数的最大公约数. 2.定字母: 字母取多项式各项中都含有的相同的字母. 找一找: 下列各多项式的公因式是什么? 3aa22(m+n)3mn-2xy(1) 3x+6y(2)ab-2ac(3) a 2 - a 3(4)4 (m+n) 2 +2(m+n)(5)9 m 2n-6mn (6)-6 x 2 y-8 xy 2 典例精析(1) 8a3b2 + 12ab3c;例2 把下列各式分解因式分析:提公因式法步骤(分两步) 第一步:找出公因式; 第二步:提取公因式 ,即将多项式化为两个因式的乘积.(2) 2a(b+c) - 3(b+c)
6、.公因式既可以是一个单项式的形式,也可以是一个多项式的形式.整体思想是数学中一种重要而且常用的思想方法.解:(1) 8a3b2 + 12ab3c=4ab2 2a2+4ab2 3bc=4ab2(2a2+3bc);如果提出公因式4ab,另一个因式是否还有公式?另一个因式将是2a2b+3b2c, 它还有公因式是b.(2) 2a(b+c)-3(b+c)=(b+c)(2a-3).如何检查因式分解是否正确?做整式乘法运算.因式分解:(1)3a3c212ab3c;(2)2a(bc)3(bc);(3)(ab)(ab)ab.针对训练(3)原式(ab)(ab1)解:(1)原式3ac(a2c4b3);(2)原式(2
7、a3)(bc);把12x2y+18xy2分解因式.解:原式 =3xy(4x + 6y). 错误公因式没有提尽,还可以提出公因式2注意:公因式要提尽.正解:原式=6xy(2x+3y).小明的解法有误吗?当多项式的某一项和公因式相同时,提公因式后剩余的项是1.错误注意:某项提出莫漏1.解:原式 =x(3x-6y).把3x2 - 6xy+x分解因式.正确解:原式=3xx-6yx+1x =x(3x-6y+1)小亮的解法有误吗?提出负号时括号里的项没变号错误把 - x2+xy-xz分解因式.解:原式= - x(x+y-z).注意:首项有负常提负.正确解:原式= - (x2-xy+xz) =- x(x-y
8、+z)小华的解法有误吗?例3 计算:(1)39371391;(2)2920.167220.161320.1620.1614.(2)原式20.16(29721314)2016.1320260;解:(1)原式31337139113(33791)方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便例4 已知ab7,ab4,求a2bab2的值原式ab(ab)4728.解:ab7,ab4,方法总结:含ab,ab的求值题,通常要将所求代数式进行因式分解,将其变形为能用ab和ab表示的式子,然后将ab,ab的值整体带入即可.1.多项式15m3n2+5m2n-20m2n3的公因式是(
9、)A5mn B5m2n2 C5m2n D 5mn2 2.把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是()Ax+1 B2x Cx+2 Dx+33.下列多项式的分解因式,正确的是()A12xyz-9x2y2=3xyz(4-3xyz) B3a2y-3ay+6y=3y(a2-a+2) C-x2+xy-xz=-x(x2+y-z) Da2b+5ab-b=b(a2+5a) B当堂练习当堂练习 C D4.把下列各式分解因式:(1)8 m2n+2mn=_;(2)12xyz-9x2y2=_;(3)p(a2 + b2 )- q(a2 + b2 )=_; (4) -x3y3-x2y2-
10、xy=_;2mn(4m+1)3xy(4z-3xy)(a2+b2)(p-q)-xy(x2y2+xy+1)(5)(x-y)2+y(y-x)=_.(y-x)(2y-x)5.若9a2(xy)23a(yx)3M(3axy),则M等于_.3a(xy)2 6.简便计算:(1) 1.992+1.990.01 ; (2)20132+2013-20142;(3)(-2)101+(-2)100.(2) 原式=2013(2013+1)-20142 =20132014-20142=2014(2013-2014) =-2014解:(1) 原式=1.99(1.99+0.01)=3.98;(3)原式=(-2)100 (-2+
11、1) =2100 (-1)=-2100.解:(1)2x2y+xy2=xy(2x+y)=3 4=12.(2)原式=(2x+1)(2x+1)-(2x-1)=(2x+1)(2x+1-2x+1)=2(2x+1).7.(1)已知: 2x+y=4,xy=3,求代数式2x2y+xy2的值. (2)化简求值:(2x+1)2-(2x+1)(2x-1),其中x= .12将x= 代入上式,得12原式=4.8.ABC的三边长分别为a、b、c,且a2abc2bc,请判断ABC是等边三角形、等腰三角形还是直角三角形?并说明理由拓展提升ABC是等腰三角形解:整理a2abc2bc得,a2abc2bc0,(ac)2b(ac)0
12、,(ac)(12b)0,ac0或12b0,即ac或b0.5(舍去),课堂小结课堂小结因式分解定义定义am+bm+mc=m(a+b+c)方法方法提公因式法公式法确定公因式的方法:三定,即定系数;定字母;定指数分两步:第一步找公因式;第二步提公因式(下节课学习)注意注意1.分解因式是一种恒等变形;2.公因式:要提尽;3.不要漏项;4.提负号,要注意变号14.3.2 公式法第十四章 整式的乘法与因式分解第1课时 运用平方差公式因式分解学习目标1.探索并运用平方差公式进行因式分解,体会转化 思想(重点)2.能会综合运用提公因式法和平方差公式对多项式进 行因式分解(难点)导入新课导入新课a米米b米米b米
13、米a米米(a-b)情境引入如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?a2- - b2=(a+b)(a- -b)讲授新课讲授新课用平方差公式进行因式分解一想一想:多项式a2-b2有什么特点?你能将它分解因式吗?是a,b两数的平方差的形式)(baba-+=22ba-)(22bababa-+=-整式乘法因式分解因式分解两个数的平方差,等于这两个数的和与这两个数的差的乘积.平方差公式:辨一辨:下列多项式能否用平方差公式来分解因式,为什么?符合平方差的形式的多项式才能用平方差公式进行因式分解,即能写成: ( )2-( )2的形式
14、. 两数是平方,两数是平方,减号在中央减号在中央(1)x2+y2(2)x2-y2(3)-x2-y2-(x2+y2)y2-x2(4)-x2+y2(5)x2-25y2(x+5y)(x-5y)(6)m2-1(m+1)(m-1)2(1) 49;x 例1 分解因式: 22(2 )3x(23)(23);xx22(2)()() .xpx qaabb( +)(-)a2 - b2 =解:(1)原式=2x32x2x33() () () ()xpx qxpx q(2)原式(2)().xp q p q 22()()xpx q典例精析方法总结:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方
15、差的形式,就能用平方差公式因式分解.分解因式:(1)(ab)24a2; (2)9(mn)2(mn)2.针对训练(2m4n)(4m2n)解:(1)原式(ab2a)(ab2a)(ba)(3ab);(2)原式(3m3nmn)(3m3nmn)4(m2n)(2mn)若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解.)(22bababa-+=-2015220142 =(2mn)2 - ( 3xy)2 =(x+z)2 - (y+p)2 =例2 分解因式: 443(1);(2).xya bab解:(1)原式(x2)2-(y2)2(x2+y2)(x2-y2)分解因式后,一定要检查是否还有能继续
16、分解的因式,若有,则需继续分解.(x2+y2)(x+y)(x-y);(2)原式ab(a2-1)分解因式时,一般先用提公因式法进行分解,然后再用公式法.最后进行检查.ab(a+1)(a-1).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式注意分解因式必须进行到每一个多项式都不能再分解因式为止分解因式:(1)5m2a45m2b4; (2)a24b2a2b.针对训练(a2b)(a2b1).5m2(a2b2)(ab)(ab);解:(1)原式5m2(a4b4)5m2(a2b2)(a2b2) (2)原式(a24b2)(a2b)(a2b)(a2b)(a2b)例3 已知x2y22,xy1
17、,求x-y,x,y的值xy2.解:x2y2(xy)(xy)2,xy1,联立组成二元一次方程组,解得1,23.2xy 方法总结:在与x2y2,xy有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.例4 计算下列各题:(1)1012992; (2)53.524-46.524.解:(1)原式(10199)(10199)400;(2)原式4(53.5246.52)=4(53.546.5)(53.546.5)41007=2800.方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.例5 求证:当n为整数时,多项式(2n+1)2-(2n-1)2一
18、定能被8整除即多项式(2n+1)2-(2n-1)2一定能被8整除证明:原式=(2n+1+2n-1)(2n+1-2n+1)=4n2=8n,n为整数,8n被8整除,方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析能被哪些数或式子整除1.下列多项式中能用平方差公式分解因式的是()Aa2(b)2 B5m220mnCx2y2 Dx29当堂练习当堂练习D2.分解因式(2x+3)2 -x2的结果是()A3(x2+4x+3) B3(x2+2x+3)C(3x+3)(x+3) D3(x+1)(x+3) D3.若a+b=3,a-b=7,则b2-a2的值为()A-21 B21 C-10 D10A4
19、.把下列各式分解因式:=_; =_; =_; (4) -a4+16=_.(4a+3b)(4a-3b)4ab9xy(y+2x)(y-2x)(4+a2)(2+a)(2-a)5.若将 2xn-81分解成 4x2+9 2x+3 2x-3 ,则n的值是_.46.已知4m+n=40,2m-3n=5求 m+2n2- 3m-n2的值原式=-405=-200解:原式= m+2n+3m-n m+2n-3m+n= 4m+n 3n-2m=- 4m+n (2m-3n ,当4m+n=40,2m-3n=5时,7.如图,在边长为6.8 cm正方形钢板上,挖去4个边长为1.6 cm的小正方形,求剩余部分的面积解:根据题意,得6
20、.8241.626.82 (21.6)26.823.22(6.83.2)(6.8 3.2)103.636 (cm2)答:剩余部分的面积为36 cm2.8. (1)992-1能否被100整除吗?解:(1)因为 992-1=(99+1)(99-1)=10098,所以,(2n+1)2-25能被4整除.(2)n为整数,(2n+1)2-25能否被4整除?所以992-1能否被100整除.(2)原式=(2n+1+5)(2n+1-5)=(2n+6)(2n-4) =2(n+3) 2(n-2)=4(n+3)(n-2).课堂小结课堂小结平 方 差公 式 分解 因 式公式a2-b2=(a+b)(a-b)步骤一提:公因
21、式;二套:公式;三查:多项式的因式分解有没有分解到不能再分解为止. 14.3.2 公式法第十四章 整式的乘法与因式分解第2课时 运用完全平方公式因式分解学习目标1.理解并掌握用完全平方公式分解因式(重点)2.灵活应用各种方法分解因式,并能利用因式分解 进行计算(难点)导入新课导入新课复习引入1.因式分解:把一个多项式转化为几个整式的积的形式.2.我们已经学过哪些因式分解的方法?1.提公因式法2.平方差公式a2-b2=(a+b)(a-b)讲授新课讲授新课用完全平方公式分解因式一你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?同学们拼出图形为:aabbababababab这个大正方形的
22、面积可以怎么求?a2+2ab+b2(a+b)2 =baababb(a+b)2 a2+2ab+b2=将上面的等式倒过来看,能得到: a2+2ab+b2 a22ab+b2 我们把a+2ab+b和a-2ab+b这样的式子叫作完全平方式.观察这两个式子:(1)每个多项式有几项?(3)中间项和第一项,第三项有什么关系?(2)每个多项式的第一项和第三项有什么特征?三项这两项都是数或式的平方,并且符号相同是第一项和第三项底数的积的2倍完全平方式的特点: 1.必须是三项式(或可以看成三项的); 2.有两个同号的数或式的平方; 3.中间有两底数之积的2倍. 222baba 完全平方式:简记口诀: 首平方,尾平方
23、,首尾两倍在中央.凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.2ab+b2=(a b)a2首2+尾22首尾(首尾)2两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方. 3.a+4ab+4b=( )+2 ( ) ( )+( )=( ) 2.m-6m+9=( ) - 2 ( ) ( )+( ) =( ) 1. x+4x+4= ( ) +2( )( )+( ) =( )x2x + 2 aa 2ba + 2b2b对照 a2ab+b=(ab),填空:mm - 33x2 m3 下列各式是不是完全平方式? (1)a24a+4; (2)1+4a
24、; (3)4b2+4b-1; (4)a2+ab+b2; (5)x2+x+0.25.是(2)因为它只有两项;不是(3)4b与-1的符号不统一;不是分析:不是是(4)因为ab不是a与b的积的2倍.例1 如果x2-6x+N是一个完全平方式,那么N是( ) A . 11 B. 9 C. -11 D. -9B解析:根据完全平方式的特征,中间项-6x=2x(-3),故可知N=(-3)2=9.变式训练 如果x2-mx+16是一个完全平方式,那么m的值为_.解析:16=(4)2,故-m=2(4),m=8.8典例精析方法总结:本题要熟练掌握完全平方公式的结构特征, 根据参数所在位置,结合公式,找出参数与已知项之
25、间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解例2 分解因式:(1)16x2+24x+9; (2)- -x2+4xy- -4y2.分析:(1)中, 16x2=(4x)2, 9=3,24x=24x3, 所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+ 24x3 + (3)2.2ab+b2a2(2)中首项有负号,一般先利用添括号法则,将其变形为- -(x2- -4xy+4y2),然后再利用公式分解因式.解: (1)16x2+ 24x +9 = (4x + 3)2;= (4x)2 + 24x3 + (3)2 (2)-x2+ 4xy-4
26、y2 =-(x2-4xy+4y2) =-(x-2y)2.例3 把下列各式分解因式: (1)3ax2+6axy+3ay2 ;(2)(a+b)2-12(a+b)+36.解: (1)原式=3a(x2+2xy+y2) =3a(x+y)2;分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b看成一个整体,设a+b=m,则原式化为m2-12m+36. (2)原式=(a+b)2-2(a+b) 6+62 =(a+b-6)2.利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.因式分解:(1)3a2x224a2x48a2;(2)(a24
27、)216a2.针对训练(a244a)(a244a)解:(1)原式3a2(x28x16)3a2(x4)2;(2)原式(a24)2(4a)2(a2)2(a2)2.有公因式要先提公因式要检查每一个多项式的因式,看能否继续分解例4 把下列完全平方公式分解因式:(1)1002210099+99;(2)3423432162. 解:(1)原式=(10099) (2)原式(3416)2本题利用完全平方公式分解因式,可以简化计算,=1.2500.例5 已知x24xy210y290,求x2y22xy1的值112121.解:x24xy210y290,(x2)2(y5)20.(x2)20,(y5)20,x20,y50
28、,x2,y5,x2y22xy1(xy1)2几个非负数的和为0,则这几个非负数都为0.方法总结:此类问题一般情况是通过配方将原式转化为非负数的和的形式,然后利用非负数性质解答问题例6 已知a,b,c分别是ABC三边的长,且a22b2c22b(ac)0,请判断ABC的形状,并说明理由ABC是等边三角形解:由a22b2c22b(ac)0,得 a22abb2b22bcc20,即(ab)2(bc)20,ab0,bc0,abc,当堂练习当堂练习1.下列四个多项式中,能因式分解的是( ) Aa21 Ba26a9 Cx25y Dx25y2.把多项式4x2y4xy2x3分解因式的结果是( )A4xy(xy)x3
29、 Bx(x2y)2Cx(4xy4y2x2) Dx(4xy4y2x2)3.若m2n1,则m24mn4n2的值是_BB14.若关于x的多项式x28xm2是完全平方式,则m的值为_ 45.把下列多项式因式分解. (1)x212x+36; (2)4(2a+b)2-4(2a+b)+1; (3) y2+2y+1x2; (2)原式=2(2a+b) 22(2a+b)1+(1) =(4a+2b 1)2;解:(1)原式 =x22x6+(6)2 =(x6)2; (3)原式=(y+1) x =(y+1+x)(y+1x).2(20142013)1.22(2014)2 2014 2013 (2013) (2)原式22(2
30、)20142014 40262013 . 6.计算:(1)38.92238.948.948.92.解:(1)原式(38.948.9)2100.7.分解因式:(1)4x24x1;(2) 小聪和小明的解答过程如下:他们做对了吗?若错误,请你帮忙纠正过来.x2 22 2x3.3.1 13 3(2)原式 (x26x9) (x3)21 13 31 13 3解:(1)原式(2x)222x11(2x+1)2 小聪小聪: : 小明小明: :8.(1)已知ab3,求a(a2b)b2的值; (2)已知ab2,ab5,求a3b2a2b2ab3的值原式25250.解:(1)原式a22abb2(ab)2.当ab3时,原
31、式329.(2)原式ab(a22abb2)ab(ab)2.当ab2,ab5时,课堂小结课堂小结完全平 方公式分 解因式公式公式a22ab+b2=(ab)2特点特点(1 1)要求多项式有三项三项. .(2 2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负.1.上课认真听讲,理解透彻这都是老师家长说烂了的东西,确实重要。与其他科目不同的是,数学强调知识与逻辑的迁移与转化。所以,对于数学知识根本不需要去死记硬背,能理解,会推导即可。如何学好初中数学?2.积极解决难题与错题在数学学习中,肯定会遇到我们毫无头绪或一知半解的题目。千万不要嫌麻烦,多向老师、同学请
32、教,向老师请教也能给老师留下好印象。不要放过每道不会的题,要学会在问题中寻找知识。3.认真反思错题并不是简单的想想自己为什么错,留下没有思路、计算错误、逻辑不清的字眼,应该仔细分析思路结果与已知条件的关系(敲重点!)对于几何辅助线(一个大难点吧),要建立起常规思路。比如说,已知中点有哪些可能性来应用,是用三线合一连接,是用斜中半连接,还是倍长中线延长,亦或是建立平行得中位线等等。从多条件的共同指向和所求问题联合思考。下一次怎么做?能得到什么启示?这是更重要的。4.坚持练习题目“练习”并不一定是“刷题”。有针对性、有效率地练习,才是最有效的。题最好坚持每天,或者两天一次做,抽一点点时间,坚持按一定频率做少量题,也是对你很有帮助的。做题并不是刻意地要去押到题或者短时间内突击提高,更多的是学习思路,打开思维。5.善于总结巧记跟3比较类似,总结其实就是从问题中找规律。此外,一些方法、技巧,在总结的基础上,可以通过编口诀(自己懂的语言就好)、调动想象与情感等方式来记忆。个人认为数学在理解的基础上记方法和技巧还是很重要的(方法其实与1类似)。同时技巧也是在不断尝试中习得的。