1、八年级八年级 上册上册 第十一章第十一章 三角形三角形11.1 与三角形有关的线段与三角形有关的线段1.1.理解三角形的有关概念理解三角形的有关概念; ;2.2.掌握三角形的三边关系,掌握三角形的三边关系, 并会灵活运用并会灵活运用. . ABC 由不在同一条直线上的三条线段首尾顺由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形次相接所组成的图形叫做三角形. . 注意:注意:1.1.不在同一条直线上不在同一条直线上. . 2. 2.首尾顺次相接首尾顺次相接. .注意:表示三角形时,字母没有先后顺序注意:表示三角形时,字母没有先后顺序. . 即:可以记作即:可以记作ABCABC,也
2、可记作,也可记作ACB.ACB.2.2.三角形的表示:三角形的表示: 三角形用符号三角形用符号“”表示,如上图的三表示,如上图的三角形,记作角形,记作“ABC”ABC”,读作,读作“三角形三角形ABC”.ABC”.1.1.三角形的定义:三角形的定义:1.1.小强用三根木棒组成的图形,小强用三根木棒组成的图形, 其中符合三角形概念的是(其中符合三角形概念的是( )C C边边边顶点顶点顶点角角角ABC1.1.三角形的三边用字母表示时,字母没有顺序限制三角形的三边用字母表示时,字母没有顺序限制. .2.2.三角形的三边,有时也用一个小写字母来表示三角形的三边,有时也用一个小写字母来表示. . 如:如
3、:ABCABC的三边中,的三边中,顶点顶点A A所对的边所对的边BCBC也可表示为也可表示为a,顶点顶点B B所对的边所对的边ACAC也可表示为也可表示为b,顶点顶点C C所对的边所对的边ABAB也可表示为也可表示为c. .3.3.一般情况下,我们一般情况下,我们 把边把边BCBC叫做叫做 A A的对边,的对边, AC AC,ABAB叫叫 A A的邻边的邻边. . 由不在同一直线上的三条线段首尾顺次相接由不在同一直线上的三条线段首尾顺次相接 所组成的图形叫做三角形所组成的图形叫做三角形、 定义:定义:三角形可用符号三角形可用符号“”表示,如上表示,如上图图 三角形记作:三角形记作:ABC三三
4、角角 形形2 2、组成、组成三条边三条边三个内角三个内角三个顶点三个顶点3、表示方法:、表示方法:边边 AB 、AC 、BC或a、 b、cABCacbA、B、C顶点顶点A 、 顶点顶点B 、顶点、顶点 C 如图所示,三角形的个数共有(如图所示,三角形的个数共有( ) A.1 A.1个个 B.2B.2个个 C. 3C. 3个个 D.4D.4个个 C 找一找,图中有多少个三找一找,图中有多少个三角形,并把它们写下来角形,并把它们写下来. .图中有图中有5 5个三角形个三角形. .分别是:分别是:ABEABE,DECDEC, BECBEC,ABCABC,DBCDBC三角形的分类三角形的分类 三角形按
5、内角的大小分为三类:三角形按内角的大小分为三类:锐角三角形;直角三角形;锐角三角形;直角三角形;钝角三角形。根据下列条件判断钝角三角形。根据下列条件判断 它们是什么三角形?它们是什么三角形?(1 1)三个内角的度数是)三个内角的度数是1:2:31:2:3( )(2 2)两个内角是)两个内角是5050和和3030 ( ) 某村庄和小学分别位于两条交叉的大某村庄和小学分别位于两条交叉的大路边(如图)路边(如图). .可是,每年冬天麦田弄不可是,每年冬天麦田弄不好就会走出一条小路来好就会走出一条小路来. .你说小学生为什你说小学生为什么会这样走呢?么会这样走呢?村村 庄庄学学 校校麦麦田田两点之间两
6、点之间线段最短线段最短思考思考:是否任意三条线段都能构成三角形?并非任意长度的三条线段都能构一个三角形。并非任意长度的三条线段都能构一个三角形。讨论:讨论:在一个三角形中,它的三边具有在一个三角形中,它的三边具有 怎么样的关系呢?怎么样的关系呢? B C A B C A B C A 已知三条线段,判断该已知三条线段,判断该三条线段能否构成三角形;三条线段能否构成三角形;下列长度的三条线段能否组成三角形?下列长度的三条线段能否组成三角形?(1 1) 3 3,4 4,8 8 ( )(2 2) 2 2,5 5,6 6 ( )(3 3) 5 5,6 6,10 10 ( )(4 4) 3 3,5 5,8
7、 8 ( )不能不能能能能能不能不能 判断三条线段判断三条线段a、b、c能否组成三角形,能否组成三角形,是否一定要检验三条线段中任何两条线段的是否一定要检验三条线段中任何两条线段的和都大于第三条线段?和都大于第三条线段?有没有更简便的判断有没有更简便的判断方法?方法? 即:即:用较短的两条线段之和与最长的线用较短的两条线段之和与最长的线段比较,若和大,能组成三角形,反之,则段比较,若和大,能组成三角形,反之,则不能不能. . 当当a最长最长,且有且有b+ca时时,就可构成就可构成三角形三角形. 由不在同一直线上的三条线段首尾顺次相接由不在同一直线上的三条线段首尾顺次相接 所组成的图形叫做三角形
8、所组成的图形叫做三角形、 定义:定义:三角形可用符号三角形可用符号“”表示,如上表示,如上图图 三角形记作:三角形记作:ABC三三 角角 形形2 2、组成、组成三条边三条边三个内角三个内角三个顶点三个顶点3、表示方法:、表示方法:边边 AB 、AC 、BC或a、 b、cABCacbA、B、C顶点顶点A 、 顶点顶点B 、顶点、顶点 C 确定三角形第三边的取确定三角形第三边的取值范围值范围:在一个三角形中,三边的关系:在一个三角形中,三边的关系: B C Axyzzyxzyx注意:注意:找哪条边,就把哪条边找哪条边,就把哪条边 写在不等号的左边。写在不等号的左边。三角形的三边分别为4cm、6cm、a cm(1)第三边a 的取值范围为_;(2)a为偶数时,则a的取值为_; 2cma 0(两边之和大于第三边) c b - a 0(两边之差小于第三边)|a+b-c|=2a+2b-2c原式=a+b-c+(-c+b+a)|c-b-a|=-(c-b-a)=-c+b+aa+b-c问题,遇到含有绝对值的化简一定要先判断绝对值内部式子的正负。已知:a, b, c是三角形的三边长化简:bacacbcbacba通过本课时的学习,需要我们掌握:通过本课时的学习,需要我们掌握: