1、第五章线性微分方程组第五章线性微分方程组云南师范大学数学学院云南师范大学数学学院 黄炯黄炯 1ppt课件例如,已知在空间运动的质点的速度与时间及点的坐标的关系为且质点在时刻t经过点求该质点的运动轨迹。2ppt课件因为,所以这个问题其实就是求一阶微分方程组满足初始条件的解(1.12)3ppt课件中,令就可以把它化成等价的一阶微分方程组注意,这是一个含n个未知函数的一阶微分方程组。另外,在n阶微分方程4ppt课件含有n个未知函数的一阶微分方程组的一般形式为:此方程组在上的一个解,是这样的一组函数使得在上有恒等式5ppt课件含有n个任意常数的解称为方程组的通解通解. 如果通解满足方程组6ppt课件则
2、称后者为(1)的通积分通积分.如果已求得(1)的通解或通积分,要求满足初始条件的解,可以把此初始条件代入通解或通积分之中,得到关于的n个方程式,如果从其中解得再代回通解或通积分中,就得到所求的初值问题的解.7ppt课件为了简洁方便,经常采用向量与矩阵来研究一阶微分方程组(1)令n维向量函数并定义则(1)可记成向量形式8ppt课件初始条件可记为 其中这样,从形式上看,一阶方程组与一阶方程式完全一样了。进一步,对n维向量Y和矩阵,9ppt课件定义易于证明以下性质:当且仅当Y = 0(0表示零向量,下同);10ppt课件对任意常数有对任意常数有称Y和A分别为向量Y和矩阵A的范数范数。进而还有如下性质
3、11ppt课件有了以上准备,完全类似于第三章定理3.1,我们有如下的关于初值问题(1)的解的存在与唯一性定理.定理定理5.1 如果函数F(x,Y)在n+1维空间的区域上满足:1) 连续;2) 关于Y满足李普希兹条件,即存在N0,使对于R上任意两点有则初值问题(1)的解在上存在且唯一,其中 12ppt课件如果在一阶微分方程组(1)中,函数方程组(1)是线性的。为线性的。5.2 一阶线性微分方程组的一般概念一阶线性微分方程组的一般概念关于13ppt课件则称(1)为一阶线性微分方程组一阶线性微分方程组。我们总假设(1)的系数及在某个区间上连续。向量形式:记:14ppt课件向量形式如果在I上,,方程组
4、变成(5.2) 我们把(5.2)称为一阶线性齐次方程组一阶线性齐次方程组。如果(5.2与(5.1)中A(x)相同,则称(5.2)为(5.1)的对应的齐次方程组.与第二章中关于一阶线性微分方程的结果类似,我们可以证明如下的关于(5.1)的满足初始条件(5.3)的解的存在与唯一性定理. (5.1) (5.3)15ppt课件定理定理5.1 如果(5.1)中的A(x)及F(x)在区间I =上连续,则对于上任一点x以及任意给定的方程组(5.1)的满足初始条件(5.3)的解在上存在且唯一.它的结论与定理3.1的不同之处是: 定理3.1的解的存在区间是局部的,而定理5.1则指出解在整个区间上存在.16ppt
5、课件5.2 一阶线性齐次方程组的一般理论 1一阶线性齐次微分方程组解的性质 本节主要研究一阶线性齐次方程组(5.2)的通解结构.为此我们首先从(5.2)的解的性质入手. (5.2) 17ppt课件是方程组(5.2)的m个解,则 也是(5.2)的解,其中是任意常数.换句话说,线性齐次方程组(5.2)的任何有限个解的线性组合仍为(5.2)的解. 若(5.4)18ppt课件定理5.2告诉我们,一阶线性齐次微分方程组(5.2)的解集合构成了一个线性空间.为了搞清楚这个线性空间的性质,进而得到方程组(5.2)的解的结构,我们引入如下概念. 定义5.1,使得 在区间I上恒成立,则称这m个向量函数在区间I上
6、线性相关;否则称它们在区间I上线性无关.显然,两个向量函数的对应分量成比例是它们在区间I上线性相关的充要条件.另外,如果在向量组中有一零向量, 则它们在区间I上线性相关. 若有函数组19ppt课件 例3中两个向量函数的各个对应分量都构成线性相关函数组.这个例题说明,向量函数组的线性相关性和由它们的分量构成的函数组的线性相关性并不等价.下面介绍n个n维向量函数组 在其定义区间I上线性相关与线性无关的判别准则.我们考察由这些列向量所组成的行列式通常把它称为向量组(5.10)的朗斯基(Wronski)行列式. (5.10) 20ppt课件 定理定理5.3 如果向量组(5.10)在区间I上线性相关,则
7、它们的朗斯基行列式W(x)在I上恒等于零.证明 依假设,存在不全为零的常数,使得把上式写成纯量形式,有这是关于的线性齐次代数方程组,且它对任一都有非零解根据线性代数知识,它的系数行列式都为零.故在I上有W(x)0.证毕.W (x)对任一21ppt课件对于一般的向量函数组,定理3.3的逆定理未必成立.例如向量函数的朗斯基行列式恒等于零,但它们却是线性无关的.然而,当所讨论的向量函数组是方程组(5.8)的解时,我们有下面的结论.定理定理5.4 如果是方程组(5.8)的n个线性无关解,则它的朗斯基行列式W(x)在I上恒不为零.22ppt课件由定理5.3和定理5.4立即得到如下的推论.推论推论5.1
8、如果向量组(5.10)的朗斯基行列式W(x)在区间I上的某一点处不等于零,即,则向量组(5.10)在I上线性无关.实际上,这个推论是定理5.3的逆否命题. 推论推论5.2 如果方程组(5.8)的n个解的朗斯基行列式W(x)在其定义区间I上某一点x0等于零,即则该解组在I上必线性相关.23ppt课件实际上,这个推论是定理5.4的逆否命题. 推论推论5.3 方程组(5.2)的n个解在其定义区间I上线性无关的充要条件是它们的朗斯基行列式W(x)在I上任一点不为零. 条件的充分性由推论5.1立即可以得到 必要性用反证法及推论5.2证明是显然的证毕2一阶线性齐次微分方程组解空间的结构 我们把一阶线性齐次
9、方程组(5.2)的n个线性无关解称为它的基本解组. 例例4 易于验证向量函数24ppt课件是方程组的基本解组. 定理5.5 方程组(5.2)必存在基本解组. 25ppt课件 定理定理5.6 如果是齐次方程组(5.2)的基本解组,则其线性组合是齐次方程组(5.2)的通解,其中为n个任意常数.推论推论5.4 线性齐次方程组(5.2)的线性无关解的个数不能多于n 个.26ppt课件 3刘维尔公式 齐次方程组(5.2)的解和其系数之间有下列联系. 定理定理5.7 如果是齐次方程组(5.2)的n个解,则这n个解的朗斯基行列式与方程组(5.2)的系数有如下关系式 这个关系式称为刘维尔(Liouville)
10、公式.27ppt课件 在代数学中,称为矩阵的迹,记作,因此刘维尔公式可表为 从刘维尔公式可以看出,齐次方程组(5.2)的几个解所构成的朗斯基行列式W(x) 或者恒为零,或者恒不为零28ppt课件54一阶线性非齐次方程组的一般理论本节研究一阶线性非齐次方程组 的通解结构与常数变易法.5.4.1通解结构定理3.8 如果是线性非齐次方程组(5.1)的解,而是其对应齐次方程组(5.2)的解,则是非齐次方程组(5.1)的解.定理定理5.9 线性非齐次方程组(5.1)的任意两个解之差是其对应齐次方程组(5.2)的解.29ppt课件是对应齐次方程组(5.2)的一个基本解组,则方程组(5.1)的通解为这里是任
11、意常数. 定理定理5.10 线性非齐次方程组(5.1)的通解等于其对应的齐次方程组(5.2)的通解与方程组(5.1)的一个特解之和.即若是非齐次方程组(5.1)的一个特解, 30ppt课件 5.4.2 拉格朗日常数变易法 在第一章我们介绍了对于一阶线性非齐次方程,可用常数变易法求其通解.现在,对于线性非齐次方程组,自然要问,是否也有常数变易法求其通解呢?事实上,定理5.10告诉我们,为了求解非齐次方程组(5.1),只需求出它的一个特解和对应齐次方程组(5.2)的一个基本解组.而当(5.2)的基本解组已知时,类似于一阶方程式,有下面的常数变易法可以求得(5.1)的一个特解. 为了计算简洁,我们定
12、义(5.2)的基本解矩阵如下: 31ppt课件其中每一列均为(5.2)的解,且是(5.2)的一个基本解组.因此.由定理5.6知,齐次方程组(5.2)的通解可表为 ,其中C为列向量32ppt课件现在求(5.1)的形如的解,其中 为待定向量函数. 将(5.17)代入(5.1)有其中(5.17) 33ppt课件因为是(5.2)的基本解矩阵,所以有从而,上式变为由于是非奇异矩阵,故存在,于是积分得代入(5.17)得到于是得到非齐次方程组(5.1)的通解公式 (5.18) 中任一点 (5.19)34ppt课件例1 求解方程组解 向量函数组 是对应齐次方程组的基本解组.现在求非齐次方程组形如 的特解,此时(5.18)的纯量形式为解之得35ppt课件从而最后可得该方程组的通解为36ppt课件是方程组(3.20)的一个基本解组.例1 试求方程组的通解.解 它的系数矩阵是特征方程是37ppt课件即所以矩阵A的特征根为先求对应的特征向量 a, b, c满足方程即38ppt课件可得取一组非零解,例如令,就有,.同样,可求出另两个特征根所对应的特征向量,这样,这三个特征根所对应的特征向量分别是故方程组的通解是39ppt课件