1、 眉山市高中2018届第四学期期末教学质量检测 参考答案 一、选择题题号123456789101112答案DBCACCADBDAB二、填空题134n1 14. 0.8 15. 120 16. 1三、解答题17. 解:()由频率分布表得:,解得a=20,b=0.35,2分由频率分布表可得随机抽取一考生恰为优秀生的概率为:P=0.25+0.15=0.44分()按成绩分层抽样抽取20人时,优秀生应抽取200.4=8人6分()8人中,成绩在80,90)的有:200.25=5人,成绩在90,100的有:200.15=3人,从8个人中选2个人,结果共有n=28种选法,8分其中至少有一人成绩在90,100的
2、情况有两种:可能有1人成绩在90,100,也可能有2人成绩在90,100,所以共有53+3=18种,至少一人的成绩在90,100的概率10分18. 解:() 令,则r=4,展开式中含的项为:,展开式中含的项的系数为106分()由题意可知:, 因为4M=N,即,a=1或(少一个答案扣2分)12分 19. 解:()由数据可得:, 2分,4分, 6分,所以故y关于x的线性回归方程为8分()()当车流量为8万辆时,即x=8时,故车流量为8万辆时,PM2.5的浓度为67微克/立方米10分()根据题意信息得:6x+19100,即x13.5,故要使该市某日空气质量为优或为良,则应控制当天车流量在13万辆以内
3、12分20. 解:(I)由以上统计数据填写下面 22 列联表,如下; 年龄不低于45岁的人年龄低于45岁的人合计赞成102737不赞成10313合计203050根据公式计算,所以有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;3分()根据题意,X的所有可能取值为0,1,2,3,4分则,;8分随机变量X的分布列为: 0 1 2 3 P 10分所以X的数学期望为12分21. 解:(),1分当时,恒成立,无极值; 2分当时,即,由,得;由,得,所以当时,有极小值.4分()因为,所以,要证,只需证.令,则,且,得;,得,在上单调递减,在上单调递增,,即恒成立,对任意实数,都有恒成立. 7分()令,则,注意到,由()知恒成立,故,8分当时,于是当时,即成立. 9分当时,由()可得().,故当时,于是当时,不成立. 11分综上,的取值范围为12分22.()解:当时,所以,曲线在点处的切线方程为.2分()解:函数.,3分分以下几种情形讨论:(1)当时,函数;4分(2)当时,当时,所以,函数5分当时,,所以,.7分()证明:当-1时, ,令,则在上恒正,所以,在上单调递增,当时,恒有,即当时,9分对任意正整数,取得,10分所以,=12分