1、 优秀领先 飞翔梦想 成人成才第3讲 分 式一、 知识清单梳理知识点一:分式的相关概念 关键点拨及对应举例1. 分式的概念(1)分式:形如 (A,B是整式,且B中含有字母,B0)的式子.(2)最简分式:分子和分母没有公因式的分式.在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)是常数,不是字母. 例:下列分式:; ;,其中是分式是;最简分式 .2.分式的意义(1)无意义的条件:当B0时,分式无意义;(2)有意义的条件:当B0时,分式有意义;(3)值为零的条件:当A0,B0时,分式0.失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0.例: 当的
2、值为0时,则x-1.3.基本性质( 1 ) 基本性质:(C0)(2)由基本性质可推理出变号法则为:; .由分式的基本性质可将分式进行化简:例:化简:=.知识点三 :分式的运算4.分式的约分和通分(1)约分(可化简分式):把分式的分子和分母中的公因式约去,即;(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即分式通分的关键步骤是找出分式的最简公分母,然后根据分式的性质通分.例:分式和的最简公分母为.5.分式的加减法(1)同分母:分母不变,分子相加减.即;(2)异分母:先通分,变为同分母的分式,再加减.即.例: 1.6.分式的乘除法(1)乘法:; (2)除法:;(3)乘方: (n为正整数).例:;2y;.7.分式的混合运算(1)仅含有乘除运算:首先观察分子、分母能否分解因式,若能,就要先分解后约分.(2)含有括号的运算:注意运算顺序和运算律的合理应用.一般先算乘方,再算乘除,最后算加减,若有括号,先算括号里面的失分点警示:分式化简求值问题,要先将分式化简到最简分式或整式的形式,再代入求值.代入数值时注意要使原分式有意义.有时也需运用到整体代入. 第 2 页 共 2 页