第8讲VAR模型课堂课件.ppt

上传人(卖家):三亚风情 文档编号:2869934 上传时间:2022-06-06 格式:PPT 页数:49 大小:14.57MB
下载 相关 举报
第8讲VAR模型课堂课件.ppt_第1页
第1页 / 共49页
第8讲VAR模型课堂课件.ppt_第2页
第2页 / 共49页
第8讲VAR模型课堂课件.ppt_第3页
第3页 / 共49页
第8讲VAR模型课堂课件.ppt_第4页
第4页 / 共49页
第8讲VAR模型课堂课件.ppt_第5页
第5页 / 共49页
点击查看更多>>
资源描述

1、.1第8讲 VAR模型.2一、向量自回归模型一、向量自回归模型?实验基本原理实验基本原理.3.4.5.6?实验内容及数据来源实验内容及数据来源?我们知道,收入、投资和消费相互影响,我们想要对这三个变量同时进行预测,可以采用VAR模型进行拟合。本书附带光盘的data文件夹的“iic”工作文件给出了1960年到1984年的一些宏观经济数据,主要变量包括:inv=投资,inc=收入,consump=消费,qtr=季度,ln_inv=投资的对数,dln_inv= ln_inv的一阶差分,ln_inc=收入的对数,dln_inc= ln_inc的一阶差分,ln_ consump =消费的对数,dln_

2、consump = ln_ consump的一阶差分。?利用这些数据,我们来讲解VAR模型阶数的确定、VAR模型的拟合、模型的平稳性检验、残差的自相关和正态性检验、脉冲响应与方差分解的作图以及模型的预测。.7?实验操作指导?1 模型定阶.8.9.10?对于“iic”的数据,因为我们要拟合投资、收入、消费的对数差分变量的VAR模型,所以,我们可以通过如下命令来确定模型阶数:?varsoc dln_inv dln_inc dln_consump?命令中,varsoc表示进行确定模型阶数的操作,dln_inv、dln_inc、dln_consump为待拟合的VAR模型的内生变量名。.11?2 VAR

3、回归的操作回归的操作.12?利用“iic”的数据,我们进行 VAR模型的拟合。键入命令:?var dln_inv dln_inc dln_consump?命令中,var表示进行VAR模型的拟合,dln_inv、dln_inc、dln_consump为各内生变量名。这里,我们没有设定滞后阶数,即使用默认的设置,在模型行中使用各变量的 1阶滞后和2阶滞后值。.13?在估计完模型之后,可以对回归结果进行保存,输入命令:?est store var1?其中,“est store”是对结果进行保存的基本命令。这里,我们将保存是结果命名为var1。之后,如果要进行模型阶数选择或平稳性检验等,就可以用这个结

4、果。?例如,我们要在回归之后再对模型的滞后阶数重新估计,可输入命令:?varsoc, estimates(var1)?这里,选项estimates(var1)表示对之前存储的拟合结果var1进行滞后阶数选择。事实上,因为我们刚刚进行完VAR模型的拟合,不加选项我们也可以得到相同的结果。.14?3 格兰杰因果关系检验格兰杰因果关系检验.15?事实上,对于vargranger所做的检验,我们可以通过test命令来实现,只不过稍微麻烦些。对于本例中,我们要检验第1个方程中dln_inc是否为dln_inv的格兰杰因,可通过如下命令实现:? test dln_invL.dln_inc dln_invL

5、2.dln_inc?其中,dln_invL.dln_inc表示方程dln_inv中dln_inc的1期滞后值的系数,dln_invL2.dln_inc表示方程dln_inv中dln_inc的2期滞后值的系数,该命令即检验这两个系数是否联合为0。.16?4 VAR模型的平稳性检验模型的平稳性检验?要检验先前拟合的 VAR模型的平稳性,我们可以键入命令:?varstable, graph?其中,选项graph表明,我们会同时得到伴随矩阵特征值的作图。.17?5 模型的残差自相关性检验模型的残差自相关性检验?对前面拟合的VAR模型进行残差自相关检验,我们输入命令:?varlmar, mlag(5)?

6、其中,mlag(5)表示最大滞后期为5。.18?6 模型残差的正态性检验模型残差的正态性检验.19?7 带外生变量的VAR模型?在前面的VAR模型中我们看到,dln_inv方程各变量的系数联合不显著。考虑一个dln_inc和dln_consump的两变量VAR模型,并将dln_inv作为外生变量来处理。输入命令:?var dln_inc dln_consump, exog(dln_inv)?其中,选项exog(dln_inv)表示将dln_inv作为外生变量加入模型中。.20?8 带约束的VAR模型?在我们前面对dln_inv、dln_inc和dln_consump做的VAR(3)模型中,方程

7、dln_inv的系数联合不显著。这样,观察各系数的 p值,我们考虑约束方程 dln_inv中L2.dln_inc 的系数和方程dln_inc中L2.dln_consump 的系数为0。定义约束的命令为:?constraint 1 dln_invL2.dln_inc = 0?constraint 2 dln_incL2.dln_consump = 0?这里,引用系数的格式为“方程名变量名”,其中,方程名为结果最左侧的一列黑体所显示的。?下面,我们进行带约束的 VAR模型拟合,命令为:?var dln_inv dln_inc dln_consump, lutstats dfk constraint

8、s(1 2)?这里,我们选择汇报 Lutkepohl的滞后阶数选择统计量,并对自由度进行小样本的调整(选项 dfk)。.21?9 脉冲响应与方差分解脉冲响应与方差分解?我们在拟合模型“ var dln_inv dln_inc dln_consump ”之后,要进行 irf系列分析,需要先激活irf文件,可键入命令:?irf set results1.22.23?我们要对前面拟合的VAR模型的irf系列函数进行估计,并将其用名称var1来标识。输入命令:?irf create var1?这样,irf系列结果就被保存到文件“results1.irf”中。.24.25?其中,如果不设定选项irf (

9、irfnames),stata将对活动的irf文件中所有保存的irf结果作图。如果不设定选项impulse()和response(),stata将对脉冲变量和响应变量的所有组合作图。此外,选项iname()和isaving()只有在设定选项individual后才可用。?如果我们想看一下dln_consump如何对dln_inv、dln_inc和dln_consump的冲击做出反应,我们可以通过如下命令实现:?irf graph oirf, irf(var1) response(dln_consump)?其中,oirf表明我们要绘制正交的脉冲响应函数,选项irf(var1)表明我们对var1标

10、识的结果进行绘图,response()设定响应变量为dln_consump。.26.27?(4)irf作表?要用表格的方式展示IRF、动态乘子函数以及FEVD等,可以通过如下命令实现:?irf table stat , options?其中,可用的统计量stat与irf graph相同。如果不设定stat,则所有的统计量都将被汇报。可用的选项包括与irf graph相同的set(filename)、irf(irfnames)、impulse(impulsevar)、response(endogvars)、individual、level(#)、noci。此外,还可以使用选项title(“ te

11、xt” )为表格设定标题。?如果我们想要对Cholesky分解中内生变量不同排序时的irf系列函数值列表比较,可以通过如下命令实现:?irf create ordera, order(dln_inc dln_inv dln_consump)?irf table oirf fevd, irf(var1 ordera) impulse(dln_inc) response(dln_consump) noci std title(Ordera versus var1)?其中,第一句命令为对irf结果重新估计,设定Cholesky分解中内生变量的顺序为dln_inc dln_inv dln_consum

12、p。而在之前估计的结果var1中,内生变量的顺序即为默认的估计VAR模型时内生变量的顺序。第二句命令对两次结果进行做表,表中将给出正交的脉冲响应函数(oirf)和Cholesky预测误差方差分解(fevd),脉冲变量为dln_inc,响应变量为dln_consump。选项irf(var1 ordera)表示对var1和ordera标识的估计结果进行做表,noci表示不显示置信区间,std表明显示标准差,title(“ Ordera versus var1” )为表格命名为“ Ordera versus var1” 。.28?对于前面irf和fevd的做表,我们还可以通过如下命令实现:?irf

13、ctable (var1 dln_inc dln_consump oirf fevd) (ordera dln_inc dln_consump oirf fevd), noci std title(Ordera versus var1)?这样,我们可以得到与前面相同的结果。?如果我们想将两种Cholesky排序下的脉冲响应放到一个图中,可以通过如下命令实现:?irf ograph (var1 dln_inc dln_consump oirf) (ordera dln_inc dln_consump oirf).29?10 基本VAR模型的拟合与绘图.30?11 VAR模型的预测模型的预测.31

14、.32.33?对于“iic.dta”的数据,我们先拟合模型:?var dln_inv dln_inc dln_consump if qtrtq(1979q1)?这里,我们用条件语句“if qtrtq(1979q1)”对样本区间做了限定,这是为了方便后面对动态预测值和样本观测值进行对比。此外,我们没有设定模型的滞后期,这里使用了默认的设置,滞后期为1到2期。?下面,我们进行动态预测并作图。输入命令:?fcast compute f1_, step(8)?fcast graph f1_dln_inv f1_dln_inc f1_dln_consump, observed?其中,第一步为计算动态预测

15、值,并将各预测变量命名为前缀“f1_”+内生变量名。step(8)设定预测的步长为8。因为我们在拟合模型时使用的样本为1979年第1季度之前的,这样,我们的动态预测值会从1979年第1季度开始,并持续8个区间,也就是说,预测到1980年第4季度为止。?第二步对各预测值作图,选项observed表明我们会同时画出各变量的实际观测值。.34?有时,我们希望将不同模型的预测结果放到一幅图中进行比较,stata可以很容易实现这一点。例如,我们还拟合了如下VAR模型并进行了预测:?var dln_inv dln_inc dln_consump if qtrtq(1979q1), lags(1/4)?fc

16、ast compute f2_, step(8)?其中,第一步拟合了滞后期为1到4期的VAR模型。第二步进行了动态预测,并将预测值的前缀设为f2_。下面,我们将这次和前一次对dln_inv的预测结果放到一幅图中:?graph twoway line f1_dln_inv f2_dln_inv dln_inv qtr if f1_dln_inv .?其中,graph twoway line表明我们要做线图,y轴的变量有f1_dln_inv、f2_dln_inv和dln_inv,x轴的变量为qtr。条件语句if f1_dln_inv .表明,我们要对f1_dln_inv不为“.”的观测值作图。因为

17、动态预测的步长为8期,事实上,我们只有8个预测数据。.35二、协整与向量误差修正模型二、协整与向量误差修正模型?实验基本原理实验基本原理.36.37?实验内容及数据来源实验内容及数据来源?本书附带光盘的data文件夹的“regincom.dta”工作文件给出了美国八个地区19482002年的人均可支配收入数据,主要变量包括:year=年度,new_england=新英格兰地区的人均可支配收入,mideast=中东部地区的人均可支配收入,southeast=东南部地区的人均可支配收入,ln_ne=新英格兰地区人均可支配收入的对数,ln_me=中东部地区人均可支配收入的对数,ln_se=东南部地区

18、人均可支配收入的对数?对于这些数据,我们想要分析东南部地区和中东部地区人均可支配收入的长期均衡关系以及短期变动情况。?对各变量进行单位根检验,我们不能拒绝各个地区人均可支配收入的对数存在单位根。又因为资本和劳动可以在各个地区自由流动,因而,我们可以期待,没有一个地区的数据会与其他地区的序列有大的偏离,也就是说各个地区的数据间应该存在协整关系。我们考虑拟合一个VEC模型。?利用“regincom.dta”的数据,我们将讲解VEC模型阶数的确定、协整关系的检验、模型的拟合、协整方程平稳性的检验、残差自相关检验和正态性检验、irf系列函数的估计与作图以及模型的预测等内容。.38?实验操作指导?1 确

19、定模型阶数?要确定VEC模型的滞后阶数,可以通过varsoc命令,在拟合模型之前或之后均可。命令格式与VAR模型完全相同。?这里,我们通过如下命令确定模型阶数:?varsoc ln_me ln_se.39.40?对ln_me和ln_se进行作图,我们有:?line ln_me ln_se year?命令中,y轴变量为ln_me和ln_se,x轴变量为year。?下面,我们通过命令来检验ln_me和ln_se之间是否存在协整关系。输入命令:?vecrank ln_me ln_se, lags(1)?我们也可以使用最大特征值统计量来判断协整关系的个数。命令为:?vecrank ln_me ln_s

20、e, lags(1) max notrace?其中,选项max表明汇报最大特征值统计量,notrace表明不汇报迹统计量。.41?2 拟合VEC模型.42?下面,我们对数据拟合VEC模型。输入命令:?vec ln_me ln_se, lags(1) ?因为我们前面检验协整关系的个数为1,所以我们就不必再使用选项rank()进行协整方程个数的设置,因为其默认值就是1。.43?3 协整方程的平稳性检验协整方程的平稳性检验?在拟合完VEC模型之后,如果要进行种种推断,就要求协整方程平稳,且协整方程的个数被正确设定。尽管vecrank提供了判断平稳的协整方程个数的办法,但该命令假定各个变量都是一阶单整

21、。因此,我们有必要在拟合完模型之后,再对协整方程的平稳性进行判断。其命令格式为:? vecstable , options?其中,vecstable代表“VEC模型平稳性检验”的基本命令语句,options代表其他选项。可用的选项与命令“varstable”相同。详见表12.24。?下面,我们对前面拟合的模型中协整方程的平稳性进行检验。输入命令:?vecstable , graph?其中,选项graph表明,我们会同时得到伴随矩阵特征值的作图。.44?4 模型的残差自相关性检验模型的残差自相关性检验?对VEC模型的估计、推断和预测等都假定残差没有自相关,因而,我们有必要对残差的自相关性进行检验

22、。其基本命令格式为:? veclmar , options?其中,veclmar代表“对残差自相关进行拉格朗日乘子检验(LM test)”的基本命令语句,options代表其他选项。可用的选项与命令“varlmar”相同。详见表12.25。?要检验前面拟合的模型残差是否自相关,我们输入命令:?veclmar.45?5 模型残差的正态性检验模型残差的正态性检验?对VEC模型进行的最大似然估计建立在残差为独立同分布且服从正态分布的假设之上。尽管很多渐近性质不依赖于残差的正态性假设,但很多研究者仍倾向于进行残差的正态性检验。?对残差的正态性进行检验的基本命令为:? vecnorm , options

23、?其中,vecnorm代表“对残差的正态性进行检验”的基本命令语句,options代表其他选项。options包括varnorm命令的所有选项(见表12.26)以及dfk选项。在计算扰动项的方差协方差矩阵时,选项dfk可以对其进行小样本调整。?对我们前面拟合的模型进行残差的正态性检验,可以输入命令:?vecnorm, jbera?其中,选项jbera表示只汇报JarqueBera统计量。.46?6 脉冲响应与方差分解脉冲响应与方差分解?对VEC模型的脉冲响应和方差分解等分析和VAR模型大致相同,只是有些命令的选项稍有差异。?首先,要激活irf文件(irf set),然后,对irf系列函数进行估

24、计(irf create),之后,再作图(irf graph或irf cgraph或irf ograph)或列表分析(irf table或irf ctable)。?其中,irf create的选项包括set(filename, replace)、replace、step(#)和estimates(estname)。其他命令的选项与VAR模型的irf系列命令相同(详见实验12-8),只是可用的统计量只包括irf=脉冲响应函数,oirf=正交脉冲响应函数,cirf=累积脉冲响应函数,coirf=累积正交脉冲响应函数, fevd=Cholesky预测误差方差分解。.47?7 VEC模型的预测模型的预测.48?对于我们前面拟合的VEC模型,我们可以对其协整方程值进行预测并作图,从而直观判断协整方程是否平稳。输入命令:?predict c1, ce?line c1 year?其中,第一句命令对协整方程值进行预测,并将其命名为c1。第二句命令为作图,y轴为c1,x轴为year。.49

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第8讲VAR模型课堂课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|