1、屋面倒塌事故 广西某车间为单层砖混结构建筑,车间平面示意见图3-59,车间檐高为5.87m,屋面大梁梁底板高为5m.屋面采用预制空心板,搁置在屋面大梁上,屋面大梁之间设有四道连系梁。大梁荷载传递到砖柱(490mm*870mm)砖壁柱(490mm*620mm)在拆除大梁模板和支撑后,发现屋面工程全部坍塌。事故原因分析 检查未发现设计问题。而施工方面从组织机构,人员配备到施工技术管理都存在严重问题,因而造成工程质量低劣 混凝土受冻或养护温度过低事故案例某工程为三层砖混结构,现浇钢筋混凝土楼盖,纵墙承重、灰土基础(图2.13)。施工后于当年10月浇灌二层楼盖混凝土。全部主体结构于第二年1月完工。在4
2、月间进行装修工程时,发现各层大梁均有斜裂缝。其现象: 裂缝多为斜向,倾角5060,且多发生在300mm的钢箍间距内。近梁中部为竖向裂缝 斜裂缝两端密集,中部稀少(值得注意的是在纵筋截断处都有斜裂缝);其沿梁高度方向的位置较多地在中和轴以下,个别贯通梁高。 裂缝宽度在梁端附近约0.51.2mm,近跨中约0.10.5mm;裂缝深度一般小于1/3,个别的两端穿通;裂缝数量每根梁少则4根,多则22根,一般为1015根。混凝土受冻或养护温度过低事故案例图片事故分析及原因施工原因:浇灌二层梁板时,未采用专门养护措施,浇灌后2h就在板面铺脚手板、堆放砖块进行砌墙。11月初浇灌三层现浇板时,室内温度为01C,
3、未采取保温措施。根据试验资料,混凝土在21d后的强度只达28d理论强度值的42.5%,一个月后才达到52%。因此混凝土早期受冻是这起质量事故的重要原因。另外,混凝土的水泥用量偏低(只有210kg/m3,略少于225kg/m3的最低值)也是因素之一。设计原因:其一是箍筋间距过大。混凝土结构设计规范7.2.7条规定,“当梁高为500mm且V0.07fcbh0时,梁中箍筋的最大间距为200mm。”而本工程箍筋间距却为300mm,这就是斜裂缝多发生在箍筋之间的原因。其二是是纵筋在梁跨中间截断。混凝土结构设计规范6.1.5条规定,“纵向受拉钢筋不宜在受拉区截断”。而本工程梁中部分纵向受拉钢筋在跨中截断,
4、截断处都出现斜裂缝,这说明受拉钢筋对梁截面的抗剪能力起到一定作用,也说明规范的规定是最适合的。比较施工和设计原因,显然可见,施工中混凝土早期受冻是产生本工程质量事故的 主要原因。事故加固方案 由于梁上有大量斜裂缝,很容易发生脆性截面破坏,引起梁的断裂,故必须进行加固。加固方案是在原大梁外包一U形截面梁,该梁按承受原来梁的的全部弯矩和剪力进行设计,并在U形截面梁的端部沿墙设置钢筋混凝土柱和基础,作为加固梁的支承。混凝土初期收缩事故案例 某办公楼为现浇钢筋混凝土框架结构。在达到预定混凝土强度拆除楼板模板时,发现板上有无数走向不规则的微细裂纹,如图2.16所示。裂缝宽0.050.15mm,有时上下贯
5、通,但其总体特征是板上裂纹多于板下裂纹 事故原因分析及处理措施 查得施工时的气象条件是:上午9时气温13C,风速7m/s,相对湿度40%;中午温度15C,风速13m/s(最大瞬时风速达18m/s),相对湿度29%;下午5时温度11C,风速11m/s,相对湿度39%。灌注混凝土就是在这种非常干燥的条件下进行的。由于异常干燥加上强风影响,故使得混凝土在凝结后不久即出现裂纹。根据有关资料记载:当风速为16m/s时,混凝土的蒸发速度为无风时的4倍;当相对湿度10%时,混凝土的蒸发速度为相对湿度90%时的9倍以上。根据这些参数推算,本工程在上述气象条件下的蒸发速度可达通常条件的810倍。 因此,可以认为
6、与大气接触的楼板上面受干燥空气和强风的影响成为产生较多失水收缩裂纹的主因,而曾受模板保护的楼板下面这种失水收缩裂纹会比较少一点。经过对灌注楼板是预留的试块和对楼板承载能力进行试验,均能达到设计要求。 这说明具有失水收缩的混凝土初期裂纹对楼板的承载力并无影响。但是为了建筑物的耐久性,还应使用树脂注入法进行补强。混凝土麻面掉角蜂窝露筋和空洞事故案例某剧场挑台平面和柱截面配筋如图2.19(a)、(b)所示。在14根钢筋混凝土柱子中有13根有严重的蜂窝现象。具体情况是:柱全部侧面面积142m2,蜂窝面积有7.41 m2,占5.2%;其中最严重的是K4,仅蜂窝中露筋面积就有0.56 m2。露筋位置在地面
7、以上1m处,正是钢筋的搭接部位(图2.19c).事故原因分析混凝土灌注高度太高。7m多高的柱子在模板上未留灌注混凝土的洞口,倾倒混凝土时未用串筒、留管等设施,违反施工验收规范中关于“混凝土自由倾落高度不宜超过2m”及“柱子分段灌注高度不应大于3.0m”的规定,使混凝土在灌注过程中已有离析现象。灌注混凝土厚度太厚,捣固要求不严。施工时未用振捣棒,而采用6m长的木杆捣固,并且错误地规定每次灌注厚度以一车混凝土为准(约厚40cm),灌注后捣固30下即可。此规定违反了施工验收规范中关于“柱子灌注厚度不得超过20cm”的界限。柱子钢筋搭接处的设计净距太小,只有3137.5mm,小于设计规范规定柱纵筋净距
8、应50mm的要求。实际上有的露筋处净距为0或10mm。事故处理方案剔除全部蜂窝四周的松散混凝土;用湿麻袋塞在凿剔面上,经24h使混凝土湿透厚度至少4050mm;按照蜂窝尺寸支以有喇叭口的模板,如图2.19(e);灌注加有早强剂的C30(旧混凝土为C20)豆石混凝土;养护14昼夜;拆模后将喇叭口上的混凝土凿除。除以上补强措施外,还应对柱进行超声波探伤,查明是否还有隐患。 混凝土施工缝处理不当事故案例某会议室门厅,屋面板为预制楼板,而大梁、圈梁、雨罩均为现浇C20钢筋混凝土构件(图2.27)。施工时,大梁混凝土先灌筑,圈梁、雨罩混凝土因故后浇灌,但却不适当地将施工缝留在大梁梁端与圈梁交接处(图2.
9、27甲),而且施工缝处的混凝土没有妥善处理,又由于该处混凝土没有侧向限制而无法振捣,实际上形成松散的一堆 。事故原因分析施工缝留在梁端剪力最大部位;施工缝处混凝土强度等级显然不满足设计要求,甚至不足C10,严重影响梁端抗剪能力和粘着力强度;新旧混凝土无法连接。事故处理措施将梁端混凝土用工小心地凿成如图2.27乙所示形状,并将部分预制楼板,以加强梁端的抗剪能力。混凝土受腐蚀事故案例 北京某旅馆的某区为一6层两跨连续梁的现浇钢筋混凝土内框架结构,上铺预应力空心楼板,房屋四周的底层和二层为490mm厚承重砖墙,二层以上为370mm厚承重砖墙。全楼底层5.0m高,用作餐馆,底层以上层高3.60m,用作
10、客房。底层中间柱截面为圆形,直径550mm,配置9根直径为22的二级钢筋纵向受力钢筋,6200箍筋,如图2.35所示。柱基础的底面积为3.50m3.50m的单柱钢筋混凝土阶梯形基础;四周承重墙为砖砌大放脚条形基础,底部宽度1.60m,二者均以地基承载力fk=180Kn/m2(持力土层为粘性土),并考虑基础宽、深度修正后的地基承载力设计值算得。 该房屋的一层钢筋混凝土工程在冬季进行施工,为混凝土防冻而在浇筑混凝土时掺入了水泥用量3%的氯盐。 该工程建成使用两年后,某日,突然在底层餐厅A柱柱顶附近处,掉下一块约40mm直径的混凝土碎块。为防止房屋倒塌,餐厅和旅馆不得不暂时停止营业,检查事故原因。事
11、故原因分析 在该建筑物的结构设计中,对两跨连续梁施加于柱的荷载,均是按每跨50%的全部恒活荷载传递给柱估算的(另50%由承重墙承受),与理论上准确的两跨连续梁传递给柱的荷载相比,少算25%的荷重。柱基础和承重墙基础虽均按fk=180Kn/m2设计,但经复核,两侧承重墙下条形基础的计算沉降估计45mm左右,显然大于钢筋混凝土柱下基础的计算沉降量(估计在34mm左右)。虽然,他们间的沉降差为11mm0.002l=0.0027000=14mm,是允许的;但是,由于支承连续梁的承重墙相对“软”(沉降量相对大)。而支承连续梁的柱相对“硬”(沉降量相对小),致使楼盖荷载往柱的方向调整,使得中间柱实际承受的
12、荷载比设计值大而两侧承重墙实际承受的荷载比设计值要小。(1)和(2)项累计,柱实际承受的荷载将比设计值要大得多。事故原因分析柱虽按550圆形截面钢筋混凝土受压构件设计,配置9根直径为22的二级钢筋纵向钢筋,AS=3421mm2,含钢率1.44%,从截面承载力看是足够的,但箍筋配置不合理,表现为箍筋截面过细、间距太大、未设置附加箍筋,也未按螺旋箍筋考虑,致使箍筋难以约束纵向受压力后的侧向压屈。事故原因分析底层混凝土工程是在冬季施工的,混凝土在浇筑是掺加了氯盐防冻剂,对混凝土有盐污染作用,对混凝土中的钢筋腐蚀起催化作用。实际上,从底层柱破坏处的钢筋实况分析,纵向钢筋和箍筋均已生锈,箍筋直径原为6,
13、锈后实为5.2左右,截面损失率约为25%。如此细又如此稀的箍筋难以承受柱端截面上9根直径为22的二级钢筋纵筋侧向压屈所产生的横拉力,起结果必然是箍筋在其最薄弱处断裂,此断裂后的混凝土保护层剥落,混凝土碎块下掉。梁根断裂事故 该工程某县公路段的机修车间(底层)和宿舍,为2层砖混结构,建筑面积556m2,屋顶局部平面与剖面见图3-62 屋顶层的挑梁尺寸与配筋情况见图3-63,混凝土C18,在拆模时发现7根挑梁根部断裂。事故原因分析 1.1.混凝土实际强度无试验资料,发混凝土实际强度无试验资料,发现混凝土密实度很差,有很多空隙,现混凝土密实度很差,有很多空隙,当时的水灰比不是由试配决定的。当时的水灰
14、比不是由试配决定的。 2.2.挑梁的主要受力钢筋严重往下移挑梁的主要受力钢筋严重往下移位位 3.3.悬挑部分比设计要长悬挑部分比设计要长 4.4.屋面超厚,自重加大。屋面超厚,自重加大。 5.5.拆模时间过早拆模时间过早 事故处理措施 1.将墙上残剩的挑梁根部打掉500mm,露出全部钢筋 2.在墙内100mm处将挑梁的主筋锯断,重新焊接新的主筋 3.修改设计,将悬挑结构改为全现浇空洞露筋事故 南京某单位办公大楼为5层现浇框架,其平面示意图见图3-90,2层框架柱浇注后,拆模时发现有6根柱存在空洞,烂根,露筋等严重缺陷,其缺陷情况见图3-91,92,93事故原因分析 1.柱浇注时分层厚度太大 2
15、.混凝土浇注后漏振或振捣不实梁开裂事故 某工程为混合结构,屋盖采用现浇钢筋混凝土梁板,梁跨度9m,为矩形截面,高800mm,宽400mm,混凝土为C18。配筋情况为:梁跨中受力钢筋4 25,支座受力钢筋2 18,浇筑后14d拆模,发现梁上由0.1-0.35mm宽的裂缝 事故原因分析 规定中大于8m的梁,拆模时的强度要达到100%才可以,而现实才达到80%,于是因强度不足导致开裂。 事故处理措施检验发现裂缝没有明显开裂,不会影响结构的安全使用,所以可以采用环氧胶泥涂抹表面,封闭裂缝.混凝土受冻害事故 某省一综合加工楼,五层楼,砖混结构,砖墙承重,现浇钢筋混凝土楼盖.在浇注混凝土时正值冬季.但施工
16、队缺乏冬季施工措施,在拆模后发现冻害严重.具体表现在1板面混凝土层剥落.板面疏松用铁器或木板刮时,表层纷纷剥落,有的外露石子,用手可以挪动,结构疏松;2混凝土强度严重不足.原设计混凝土为C25,实测强度大都在C10C13之间,个别的仅为C6,3表面裂缝遍布,参看图 混凝土受冻害原因分析 原因分析 显然是混凝土在凝结硬化过程中受了冻害.这从取样混凝土中,发现骨料表面有明显的结冰痕迹.混凝土的水化反应随着温度的 减低而减弱,水结冰则水化反应完全停止.水的冰冻温度为0度,但在混凝土混合物中总有一些溶解物质,水的 结冰温度要低于0度,约在-1-4度.在低温环境中浇筑混凝土,由于混凝土在硬化前受冻,水化
17、反应很弱,同时新形成的水泥水化物的强度弱,水结冰冻胀时,内部结构遭到破坏.因而强度严重不足. 现制混凝土的裂缝和缺陷违反操作规程带来的质量事故 某化工厂备品库施工中,倒运混凝土行车梁时,需要从构件堆中抽出一根。因吊钩不垂直,行车梁相互碰撞,刮倒一根行车梁断裂报废。 原因分析: 违反操作规程,即没有按顺序将其他构件倒开,然后再起吊装车,这是这次事故发生的前提。 指挥人员与司机判断有误和思想上的麻痹大意是造成这次事故的直接原因。北京市某美食娱乐城一楼地面(证券厅)质量问题 证券厅地面是用天然花岗岩证券厅地面是用天然花岗岩“将军红将军红”铺设的,于铺设的,于1994年年5月份交工。在交工验收时发现了
18、较为严重的空鼓和铺设月份交工。在交工验收时发现了较为严重的空鼓和铺设不平、缝子不匀等质量问题,现对上述问题做了如下分析。不平、缝子不匀等质量问题,现对上述问题做了如下分析。地面空鼓地面空鼓事故现象事故现象验收时敲击多处明显的空鼓声音,个别板块松动,有的出验收时敲击多处明显的空鼓声音,个别板块松动,有的出现裂纹。现裂纹。原因分析原因分析基层清理不干净,浇水湿润不够,有的板块下面的水泥素基层清理不干净,浇水湿润不够,有的板块下面的水泥素浆结合层涂刷的不均匀,有的是因为涂刷时间过长,致使浆结合层涂刷的不均匀,有的是因为涂刷时间过长,致使风干硬结,造成面层和垫层同时出现空鼓。风干硬结,造成面层和垫层同时出现空鼓。垫层砂浆加水过多或一次铺得太厚,不易砸密实,造成面垫层砂浆加水过多或一次铺得太厚,不易砸密实,造成面层空鼓。层空鼓。板块背面浮灰没有清理,也没有用水湿润,直接影响粘结板块背面浮灰没有清理,也没有用水湿润,直接影响粘结效果、加之操作质量差,锤击不当,故多处出现空鼓。效果、加之操作质量差,锤击不当,故多处出现空鼓。