1、1优化试验设计与数据分析本章主要内容本章主要内容 单因素优选法:黄金分割法、平分法、分数法。单因素优选法:黄金分割法、平分法、分数法。 多因素降维法:等高线法、纵横对折法、平行线法。多因素降维法:等高线法、纵横对折法、平行线法。 各种优选法的应用范围和适用条件。各种优选法的应用范围和适用条件。2第四章 优选法基础国庆来临,某商场为吸引顾客,打出了降价促销的招牌。商品的折扣越低,单件商品的利润就越低,但是销量会越大。假如说某件商品价格低至2折时,无利润可赚,不打折出售的话,顾客消费不会比平时多。为什么要采用优选法3第四章 优选法基础假如你是这家店的店长,想在假期通过打折促销,尽可能赚取比平时丰厚
2、的利润,让更多的人将商品带回家?你会怎样制定合适的折扣呢?思考问题思考问题 4第四章 优选法基础蒸馒头是日常生活中常做的事情,为了使蒸出的馒头好吃,就要放一定量的碱。在蒸馒头时你该放多少碱呢?5第四章 优选法基础在钢铁生产的过程中,需要加入一定量的碳元素,碳元素含量高的话产出的钢硬度就大,但是可塑性低,相反,含量少的话钢的硬度就无法达到指定的标准,每吨钢中碳元素的含量应该是多少就正好符合产品要求了呢?6第四章 优选法基础2-1 概述 优选法基本步骤:1)选定优化判据(试验指标),确定影响因素,优选数据是用来判断优选程度的依据。2)优化判据与影响因素直接的关系称为目标函数3)优化计算 优化(选)
3、试验方法一般分为两类:分析法:同步试验法黑箱法:循序试验法12( ,.)iNiyf x xxyx-试验指标-第 个试验条件7第四章 优选法基础2-2 单因素优选法如果在试验范围内,目标函数单调,则可以选用此法ab连续单调f(x)间断单调a bf(x)一、平分法8第四章 优选法基础 有一条10km长的输电线路出现了故障,在线路的一端A处有电,在另一端B处没有电,要迅速查出故障所在位置.9第四章 优选法基础我们用平分法来进行解答输电线路故障:分析:现在找输电线路故障所在位置,我们只需在AB之间的任意点C做检验,就能根据点C是否有电,判断出故障在哪一段,从而缩小故障范围,而不需要做两个实验进行比较.
4、那么,如何选取检查点才能迅速找出故障位置呢?10第四章 优选法基础 由于在检查前无法预知检查结果,因此也就无法知道要排除的是检查点左边还是右边的线路.为了克服盲目性,我们把每次检查点安排在线路的中间,这样就可以去掉一般的长度.第一个检查点C安排在线路中间,如果有电,说明故障不在AC而在CB段,接着在CB中点D检查,如果没有电,说明在CD部分,再在CD中点E处检查,以此类推,很快就能找出故障的位置。11第四章 优选法基础 注意注意 这个方法色要点是每个试点都去在这个方法色要点是每个试点都去在因素范围的中点,将因素范围对分为两因素范围的中点,将因素范围对分为两半,所以这个方法就称为半,所以这个方法
5、就称为对分法对分法.用这种用这种方法做试验的方法做试验的优化速度最快优化速度最快,每次可以,每次可以去掉一半去掉一半.12第四章 优选法基础平分法的作法平分法的作法为:总是在试验范围的中点安排试验,中点公式为:根据试验结果,如下次试验在高处(取值大些),就把此试验点(中点)以下的一半范围划去;如下次试验在低处(取值小些),就把此试验点(中点)以上的一半范围划去,重复上面的试验,直到找到一个满意的试验点。ab中点21313第四章 优选法基础例51 乳化油加碱量的优选(循序试验法)高级纱上浆要加些乳化油脂,以增加柔软性,而油脂乳化需加碱加热。某纺织厂以前乳化油脂加烧碱1,需加热处理4小时,但知道多
6、加碱可以缩短乳化时间,碱过多又会皂化,所以加碱量优选范围为14.4第一次加碱量(试验点):2.7%=(1%+4.4%)/2有皂化,说明碱加多了,于是划去2.7%以上的范围1% 2.7% 4.4%1414第四章 优选法基础第二次试验加碱量(试验点):1.85%=(1%+2.7%)/2乳化良好第三次,为了进一步减少乳化时间,不走考虑少于1.85%的加碱量,而取2.28%=(1.85%+2.7%)/2乳化仍然良好,乳化时间减少1小时,结果满意,试验停止。1% 1.85% 2.7%1.85% 2.28% 2.7%15第四章 优选法基础二、黄金分割法(0.618法) 对于一般的单峰函数,我们可以采用此法
7、ab单峰函数f(x)16第四章 优选法基础单因素问题 我们把只考虑试验过程中的一个因素对试验结果的影响的问题称为单因素问题.好点与差点 设x1与x2是因素范围a,b内的任意两个试点,c点为最佳点,并把两个试点中效果较好的点称为好点,效果较差的点称为差点.17第四章 优选法基础 对于一般的单峰函数,如何安排试点才能迅速找到最佳点?18第四章 优选法基础 对于单峰函数,在同侧,离最佳点越近的点越是好点,且最佳点与好点必在差点的同侧由此,可按如下想法安排试点:先在因素范围a, b内任选两点各做一次试验,根据试验结果确定差点与好点,在差点处把a, b分成两段,截掉不含好点的一段,留下存优范围a1, b
8、1,显然有a1, b1a, b;19第四章 优选法基础例如,假设因素区间为0, 1,取两个试点2/10、1/10,那么对峰值在(0, 1/10)中的单峰函数,两次试验便去掉了长度为4/5的区间(图1);但对于峰值在(2/10, 1)的函数,只能去掉长度为1/10的区间(图2),试验效率就不理想了。20第四章 优选法基础怎样选取各个试点,可以最快地达到或接近最佳点?21第四章 优选法基础我们希望能“最快”找到或接近最佳点的方法不只针对某个具体的单峰函数,而是对这类函数有普遍意义.由于在试验之前无法预先知道哪一次试验效果好,哪一次差,即这两个试点有同样的可能性作为因素范围a, b的分界点,所以为了
9、克服盲目性和侥幸心理,在安排试点时,最好使两个试点关于a, b的中心(a+b)/2对称。22第四章 优选法基础同时,为了尽快找到最佳点,每次截去的区间不能太短,但是也不能很长。因为为了一次截得足够长,就要使两个试点x1和x2与(a+b)/2足够近,这样,第一次可以截去a, b的将近一半。但是按照对称原则,做第三次试验后就会发现,以后每次只能截去很小的一段,结果反而不利于很快接近最佳点。23第四章 优选法基础为了使每次去掉的区间有一定的规律性,我们这样来考虑:每次舍去的区间占舍去前的区间的比例数相同。24第四章 优选法基础下面进一步分析如何按上述两个原则确定合适的试点.,2,1,12211221
10、xbaxbaxxxxxx-=-即的中心对称关于且和试点分别为第试点设第如图abx1x225第四章 优选法基础ax1x2x3 显然,不论点x2(或点x2)是好点还是差点,由对称性,舍去的区间长度等于b-x1,不妨设行x2是好点,x1是差点,于是舍去(x1,b.再在存优范围a,x1内安排第三次试验,设试点为x3,x3与x2关于a,x1的中心对称(如图)。26第四章 优选法基础, (1),.,)(,.,(,.1211212312232323axxxabxbxxxxbxxaxxxxxx-=-我们有等式成比例舍去的原则按于被舍去的区间长度都等差点是好点还是或点不论点于是原则违背成比例舍去的的长度相同区间
11、的而它的长度与上次舍去舍去区间要是差点时是好点那么当的右侧在点因为如果点左侧应在点点27第四章 优选法基础)2(.,11,) 1 (.,1211211axaxabaxaxxxabxb-即得形变对式例数右边是第二次舍去的比例数左边是第一次舍去的比其中28第四章 优选法基础)4(1)3(,.)2(2121tabaxaxxbtabaxt-可得则由即数为前全区间的比例弃后的存优范围占舍弃设每次舍比例数范围占舍弃前全区间的的存优两边分别是两次舍弃后式29第四章 优选法基础. 01,1),5()4()3()5(,)2(2121-+-tttttabaxabaxabax即得代入与把得由式30第四章 优选法基础
12、。618. 0,618. 0,215.,.,.251,251121法割法叫做也把黄金分相应地取其近似值我们往往具体应用时是无理数由于金分割法确定试点的方法叫做黄利用黄金分割常数试验方法中表示用分割常数这就是黄金为对本问题有意义的根中其解得-+-wwttt31第四章 优选法基础0.618法的作法为:第一个试验点x1设在范围(a,b)的0.618位置上,第二个试验点x2取成x1的对称点,即12120.618()(5 1)(52)0.382()(53)abxabaxabxxaba+-+-+-也可称 为试验范围的小头, 为试验范围的大头,上述公式可以表示为:第一点小0.618(大小)(5-1)第二点大
13、小第一点(5-2)32第四章 优选法基础a x2 x1 b如果用f(x1)和f(x2)分别表示x1和x2上的试验结果,如果f(x1)比f(x2)好, x1是好点,于是把试验范围(a, x2)划去剩下( x2,b),如果f(x1)比f(x2)差, x2是好点,于是把试验范围( x1,b) 划去剩下(a, x1),下一步是在余下的范围内寻找好点33第四章 优选法基础3321xxxxbx+-13对于第一种情形,x的对称点 ,在安排第三次试验,用对称公式计算有:21xxxb3312xaxx+-32对于后一种情形,第三个试验点x 应是好点x 的对称点,也就是:a x3 x2 x134第四章 优选法基础1
14、2212121f(x )f(x ), )(,)a,b(,)bx xxxx x12如果与一样,则应该具体分析,看最优点可能在哪边,再决定取舍。一般情况下,可以同时划掉(a,x和(x,仅留中点的,把 看成新看成新 ,然后在范围内重新安排试验这个过程重复进行下去,知道找出满意的点,得出比较好的试验结果;或者留下的试验范围已很小,再做下去,试验差别不大时也可终止试验另:公式(5-2),(5-2)还可用折纸的办法得到35第四章 优选法基础下面我们通过例子来说明它的下面我们通过例子来说明它的具体操作方法具体操作方法.案例:炼钢时通过加入含有特定化学元素的材料,使炼出的钢满足一定的指标要求.假设为了炼出某种
15、特定用途的钢,每吨需要加入某种元素的量在1000g到2000g之间,问如何通过实验的方法找到它的最优加入量?36第四章 优选法基础 最朴素的想法就是以1g为间隔,从1001开始一直到1999,把10002000g间所有的可能性都做一遍试验,就一定能找到最优值.这种方法称为均分法.但这样要做1000次试验,在时间、人力和物力上都是一种浪费.用0.618法,可以更快、更有效地找出最佳点.具体操作方法如下: 37第四章 优选法基础用一张纸表示10002000g,以1000为起点标出刻度.找出它的黄金分割点x1的对称点x2作为第2试点38第四章 优选法基础这两点的材料加入量是: X110000.618
16、(20001000)1618(g), X210002000 x11382(g)如果称因素范围的两端分别为大头和小头,那么上述两式可表示为 X1小0.618(大小); (1) X2小大x1 (2)对于式(2),相当于是“加两头,减中间”.类似的在确定第n个试点x n时,如果存优范围内相应的好点是xm,那么有公式 X n 小大x m39第四章 优选法基础 比较两次试验结果,如果第2试点比第1试点好,则沿1 618处将纸条剪断去掉1 618以上的部分,保留1 618以下的部分.将保留的纸条对折,找出第2试点x2的对称点x3作为第3试点。按公式,有 X=1000+1618-1382=1236,即第3
17、次的材料加入量是1236g. 1000100016181618xx2xx31236138240第四章 优选法基础如果第2次试点仍是好,则减掉1236以下的部分,在留下部分内寻找 x2的对称点x4作为第4试点,按照公式可得第4试点的材料加入量为1472 。1236123616181618xx2xx4x3x11382147241第四章 优选法基础 如果这点比第2点好,则剪掉1382以下部分,在留下的部分内按同样的方法继续下去,就能迅速逼近该元素的最佳加入量.对于一般的因素范围a, b,用0.618法确定试点的操作过程与上述过程完全一致.从上述过程可看到,用0.618法寻找最佳点时,虽然不能保证在有
18、限次内准确找出最佳点42第四章 优选法基础但随着试验次数的增加,最佳点被限定在越来越小的范围内,即存优范围会越来越小。我们用存优范围与原始范围的比值来衡量一种试验方法的效率,这个比值叫做精度,即n次试验后的精度为nn次试验后的存优范围原始的因素范围43第四章 优选法基础显然,在相同试验次数下,精度越高,方法越好。用0.618法确定试点时,从第2次试验开始,每一次试验都把存优范围缩小为原来的0.618。因此,n次试验后的精度为:n 1n0.618-44第四章 优选法基础 如果这两次试验结果一样,则应具体分析,看最佳点可能在那一边,再决定取舍。在一般情况下,可以同时划过去因素范围1000,1382
19、和1618,2000,仅保留中间因素范围1382,1618。那么这样做会不会划去最佳点呢? 45第四章 优选法基础 如果目标是单峰函数,那么就不会划去最佳点。具体推理过程可以参考如下: 若f(x)是a,b上的单峰函数,x=c是最佳点,且f(x1)=f(x2),则根据f(x)在a,c和c,b上单调,可知x1,x2不会同在a,c或c,b上,因此x1,x2分别在c的两侧,即c在保留的中间范围x1,x2上。46第四章 优选法基础探究探究 用0.618法寻找最佳点时,达到精度0.05的要求需要多少次试验?精度0.01呢?精度呢?47第四章 优选法基础设达到精度0.05的要求n次试验,那么 0.618n-
20、10.05,即lg0.05n+17.22lg0.618于是,只要安排8次试验,就能保证精度达到0.05.同理可得,安排11次试验,就能保证精度达到0.01.48第四章 优选法基础一般地给定精度,为了达到这个精度,所要做的试验次数n满足:0.618n-11,即(n-1)lg0.618lg0.49第四章 优选法基础所以lgn1lg 0.618+ 黄金分割法适用目标函数为单峰的情形,第1个试点确定在因数范围的0.618处,后续试点可以用“加两头,减中间”的方法来确定.50第四章 优选法基础1.黄金分割常数的导出.2.为了合理选取试验点,需要注意两点: (1)每次要进行比较的两个试验点,应关于相应试验
21、区间的中心对称; (2)每次舍去的区间占舍去前的区间长度的比例数应为相同.3.用折纸的方法,可以简化计算过程,这样做是使用几何操作方法来保证以下两点:小结51第四章 优选法基础 (1)每次要进行比较的两个试验点,应关于相应试验区间的中心对称; (2)每次舍去的区间长占舍去前的区间长的比例数应相同.4.试验点的选取: x1=小+0.618 (大小); x2=小+大x1.一般:xn=小+大xm.概括为“加两头,减中间”.52第四章 优选法基础 调酒师为了调制一种鸡尾酒.每100k烈性酒中需要加入柠檬汁的量1000g到2000g之间,现准备用黄金分割法找到它的最优加入量. (1) 写出这个试验的操作
22、流程. (2) 如果加入柠檬汁误差不超出1g,问需要多少次试验?53第四章 优选法基础解答:解答: (1)试验可按以下进行: 做第一次试验:第一次试验的加入量为:(20001000)0.618+1000=1618(g),即取1618g柠檬汁进行第一次试验. 做第二次试验:在第一点的对称点处做为第二次试验点,这一点的加入量可用下面公式计算(此后各次试验点的加入量也按下面公式计算):大中+小=第二点. 54第四章 优选法基础即第2点的加入量:20001618+1000=1382(g). 比较两次试验结果,如果第二点比第一点好,则去掉1618克以上的部分;如果第一点较好,则去掉1382克以下分假定试
23、验结果第一点较好,那去掉1382克以下的部分,即存优范围为1382,2000,在此范围找出第一点(即1618)的对称点做第三次试验.其加入量用公式计算:加入量=大-中+小.55第四章 优选法基础即第三次试验的加入量为:2000-1618+1382=1764(g).再将第三次试验结果与第一点比较,如果仍然是第一点好些,则去掉1764克以上部分,如果第三点好些,则去掉1618克以下部分.假设第三点好些,则在留下部分(即1618, 2000)找出第三点(即1764)的对称点做第四次试验.第四点加入量为:2000-1764+1618=1854(g).56第四章 优选法基础第四次试验后,再与第二点比较,
24、并取舍.在留下部分用同样方法继续试验,直至找到最佳点为止. (2) 若误差不超出1g,即精度(21)/1000=0.002. 所以0.618n-10.002,得nlg0.002/lg0.618+1,即n18.697. 故需要19次试验.57第四章 优选法基础三、分数法分数法也是适合单峰函数的方法,要求预先知道试验总数ab单峰函数f(x)58第四章 优选法基础59第四章 优选法基础60第四章 优选法基础斐波那契螺旋与黄金矩型蓟、向日葵、松果、菠萝都是按这种方式生长的。如此的原因很简单:这样的布局能使植物的生长疏密得当、最充分地利用阳光和空气61第四章 优选法基础案例案例1 1 : 在配置某种清洗
25、液时,需要加入某种材料。经验表明,加入量大于130ml肯定不好。用150ml的锥形量杯计量加入量,该量杯的量程分为15格,每格代表10ml。用试验设计方法找出这种材料的最优加入量。62第四章 优选法基础 案例1中,加入量大于130ml时肯定不好,因此试验范围就定在0130ml. 我们看到,10ml、20ml、30ml,120ml把试验范围分为13格,对照的渐进分数列,如果8/13=F5/F6来代替0.618,那么我们有X1=0+(8/13)*(130-0)=80,63第四章 优选法基础 这样,第1个试点安排在80ml处,其对称点用“加两头,减中间”的方法,得:X2=0+130-80=50, 即
26、第2个试点安排在50ml处,在整个因素范围的5/13=F4/F6位置, 比较两次试验结果,如果x1时好点,则去掉x2一下部分,存优范围为50130ml,其中有8格(7个试点,包括一个已做过试验的80ml处).64第四章 优选法基础 在存优范围50130ml内,用“加两头,减中间”的方法求x1的对称点,得:X3=50+130-80=100, 所以第3个试点在100ml处,这个点相当于存优范围重新进行编号后的F4/F5位置,而x1在存优范围的F3/F5位置. 继续用“加两头,减中间”的方法确定试点,几次试验后,就能找到满意的结果.65第四章 优选法基础案例案例2 2: 调试某设备的线路中,要选一个
27、电阻,但调试者手里只有阻值为0.5K,1K, 1.3K,2K,3K,5K,5.5K等七种阻值不等的定值电阻。他应当如何优选这个阻值?66第四章 优选法基础针对电阻问题,我们进行解决:解: 如果采用0.618法,则计算出来的电阻测试者手里可能没有,这时,可以先把这些电阻由小到大顺序排列:阻值(K)排列0.511.32 3 55.5 (1) (2) (3) (4) (5) (6) (7)67第四章 优选法基础 这样,就把阻值优选变为排列序号的优选,问题就容易解决了. 为了便于用分数法,可在两端增加虚点(0),(8),使因素范围凑成为8格,用5/8来代替0.618.第一个试点序号(5),即3K;第二
28、个试点按“加两头,减中间”的方法得(0)+(8)- (5)= (3),即取1.3K.以下按分数法顺序确定试点,就可以较快的找到较好的试点.68第四章 优选法基础 如果因素范围由一些不如果因素范围由一些不连续的、间隔不等的点组成,连续的、间隔不等的点组成,试点只能取某些特定数,这试点只能取某些特定数,这时只能采用时只能采用分数法分数法.69第四章 优选法基础例 5-6卡那霉素生物测定培养温度优选卡那霉素发酵液生物测定,国内外都有规定培养温度为 371,培养时间在 16 小间以上。某制药厂为缩短时间,决定优选培养温度,试验范围固定为 2950,精确度要求1。70第四章 优选法基础中间试验点共有 2
29、0个,用分数法安排试验,第一个试验点选在第 13个分点 42;第二个试验点在第 8个分点 37。经过 5次试验,证明在 42. 43培养最好,只需 8-9小时。试验序号试验点编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2171第四章 优选法基础Eg 某研究小组准备对某一化学制品进行改进,现决定优选某添加剂用量,试验范围定为100134g,精确度要求3g,现在研究人员准备用分数法进行优选。 (1) 如何安排试验? (2) 若最佳点为129g,请列出各试验点的数值。 (3) 要通过多少次实验可以找出最佳点。72第四章 优选法基础 实验范围总长34,用分数法安
30、排试验,选定分数为21/34 试验点如下 第1点:x1=100+34*21/34=121 第2点:x2=100+134-121=113 第3点:x3=113+134-121=126 第4点:x4=121+134-126=129 通过四次试验可以找出最佳点73第四章 优选法基础四、分批试验法 0.618法试验次数少,但后面的试验安排取决于前面的试验结果 这种方法对试验周期长的不适用 此时可采用分批试验法,每批多做几个试验,同时进行比较,这样一批一批做下去,就可得到理想的结果。试验布点取决于试验批数和每批的试验点数,可以均匀分批试验也可等比例分批试验。74第四章 优选法基础 电机修理厂根据原工艺要
31、求,单晶切片厚度为0.54mm左右,经研磨损失0.15mm左右,1kg单晶只出12000左右小片。为了节约原材料、提高功效、降低成本,对减小单晶片厚度,在(0.20, 0.40)范围内做优选法试验。切割不同厚度的单晶片很方便,但要检验究竟哪一种厚度好,则要经过磨片、化学腐蚀、烘干、烧结、参数测定等工序,试验周期长达三天(生产中则更长,要一个多星期),而且有些工序必须在同一条件下才能得到正确结果。75第四章 优选法基础 为了加快试验进度,我们很容易想为了加快试验进度,我们很容易想到把所有可能的试验同时安排进行,根到把所有可能的试验同时安排进行,根据试验结果,找出最佳点据试验结果,找出最佳点。比较
32、好的办比较好的办法是全部试验分几批做,一批同时安排法是全部试验分几批做,一批同时安排几个试验,同时进行比较,一批一批做几个试验,同时进行比较,一批一批做下去,直到找出最佳点下去,直到找出最佳点.这样可以兼顾试这样可以兼顾试验设备、代价和时间上的要求验设备、代价和时间上的要求。这种方这种方法称为法称为分批试验法分批试验法。76第四章 优选法基础分批试验法分批试验法可以分为可以分为均分分均分分批试验法批试验法和和比例分割分批试比例分割分批试验法验法两种两种.77第四章 优选法基础2.2.比例分割分批试验法比例分割分批试验法第一批第一批1.1.均分分批试验法均分分批试验法第一批第一批第二批第二批 第
33、二批第二批0.200.300.500.4078第四章 优选法基础 这要根据具体情况而定。如果做一次试验很方便,消耗很少、时间很短;或检验很麻烦,时间又长;或代价很大,而且每次检验可以有好多样品同时进行,在这种情况下 每批试验可多做几个,即将试验范围分得细一些;否则就少做几个。究竟一批安排几个试验合适呢?究竟一批安排几个试验合适呢?79第四章 优选法基础 对要求我们在原有生产条件的基础上逐步探索,逐步提高,就像盲人爬山一样,在立足处,对前后两个方向进行试探,如果前面高了就向前走一步,否则试探后面,如果前后都比某点低,就说明到山顶了.五、盲人爬山法80第四章 优选法基础盲人爬山法的操作步骤是: 选
34、找一个起点A(可以根据经验或估计),在A点做试验后可以向该因素的减少方向找一点B 做试验.如果好,就继续减少;如果不好就往增加方向找一点C 做试验,这样一步步地提高.81第四章 优选法基础如果增加到E 点,再增加F点时反而坏了,这时可以从E点减少增加的步长,如果还是没有E点好,则E 就是该因素的最佳点。这就是单因素问题的盲人爬山法。82第四章 优选法基础 注意注意1.盲人爬山法是一种采用小步调整策略的优选法,其依据的原理就是单峰函数的最佳点与好点在差点的同侧.2.盲人爬山法的效果与起点关系很大,另外,每步间隔的大小,对试验效果关系也很大.在实践中往往采取“两头小,中间大”的办法.83第四章 优
35、选法基础 前面介绍的方法都只适用于“单峰”的情况.现实生产、生活中也经常碰到“多峰”的情形,有时甚至连“单峰”还是 “多峰”都不知道,那又该如何下手呢?f(x)abxyo六、多峰函数寻优的处理84第四章 优选法基础一般可采用以下两种方法:(1)先不管它是“单峰”还是 “多峰”,用前面介绍的处理单峰的方法去做,找到一个“峰”后,如果达到预先要求,就先用于生产,以后再找其他更高的“峰”(即分区寻找)。85第四章 优选法基础(2)先做一批分布得比较均匀的试验,看它是否有“多峰”的现象.如果有,则分区寻找,在每个可能出现“高峰”的范围内做试验,把这些“峰”找出来。第一批分布均匀的试点最好以下述比例划分
36、:=0.618:0.382。这样有峰值的范围总是成( , )或(, )形式。86第四章 优选法基础2-3 多因素方法降维法多因素问题:首先对各个因素进行分析,找出主要因素,略去次要因素,划“多”为“少”,以利于解决问题12( ,.)iNiyf x xxyx-响应值-第 个试验条件87第四章 优选法基础一、等高线法又叫坐标轮换法(1)固定其中一个因素在适当的位置,或者放在0.618处,对另外一个因素使用单因素优选法,找出好点(2)固定该因素于好点,反过来对前一个因素使用单因素优选法,选出更好点,如此反复88第四章 优选法基础 例如:有两个因素需要考虑,一个是用量,其范围(1000,2000),另
37、一个是温度,其范围(1000,2000)。因素1因素22000161810001000g 2000g(1)固定温度于0.618处(2)优选出用量的最佳点A(3)固定用量于点A(4)优选温度最佳点B(5)固定温度于点B(6)再次优选用量最佳点CABCD89第四章 优选法基础111222axbaxb等高线的一般作法:假设试验范围为一长方形:因素1因素21a2a1b2b(1)1x(2)1x(1)2x(1)112(1)(1)12(,)xxxxx1固定 在处,而用单因素方法对因素 进行优选,得最优点记为A(1)221(2)(1)12(,)xxxxx2然后固定 于,用单因素法对因素 进行优选,又得到最优点
38、记为A1A2A90第四章 优选法基础1a2a2b(1)1x(1)1x(1)11(1)11122xxxxbaxb将直线由将原长方形剪成两块,剩下的试验范围为:1b(1)1x(2)1x2A91第四章 优选法基础(2)112(1)(2)22(1)111(1)222(,)xxxxxxxbxxb333新的试验范围内,将 固定于,而对 进行优选,又得到一点A。于是,丢掉不含A 的一块,而在包含A 的一块中继续优选,剩下的试验范围为:1b(1)1x(2)1x(1)2x(2)2x3A(2)221xxx再将 固定在处,而对 进行优选,依此方法继续进行92第四章 优选法基础 阿托品是一种抗胆碱药.为了提高产量、降
39、低成本,利用优选法选择合适的脂化工艺条件.根据分析,主要因素为温度与时间,定出其试验范围为 温度:5575, 时间:30min210min.93第四章 优选法基础用从好点出发法对工艺条件进行优选:(1) 参照生产条件,先固定温度为55,用单因素法优选时间,得最优时间为150min,其产率为41.6%.(2) 固定时间为150min,用单因素法优选温度,得最优温度为67,其产率为51.59%.(3) 固定温度为67,用单因素法再优选时间,得最优时间为80min,其产率为56.9%.94第四章 优选法基础(4) 再固定时间为80min,又对温度进行优选,结果还是67好.试验到此结束,可以认为最好的
40、工艺条件为温度:67,时间:80min.实际中采用这个工艺进行生产,平均产率提高了15%.95第四章 优选法基础二、纵横对折法1a2a1b2b(1)1x(1)2x222ab+112ab+1A2x1x11122211122222axbaxbabxabx+两因素时,假设试验范围为长方形在此长方形的纵横两根中线上用单因素方法求出最优点1B96第四章 优选法基础222(1)22211111(1)1112112A222abxabxxabxabxxB+1先将因素 固定在处,而用单因素方法求出相应于的最优点数值,这样一个两因素的组合记为。同样,固定 在,而用单因素方法求出相应于的最优点数值,这样一个两因素的
41、组合记为B。比较A 和 的结果,去掉不适合的部分,缩小试验范围,继续进行试验,直至试验结果满意为止97第四章 优选法基础 某炼油厂试制磺酸钡,其原料磺酸是磺化油经乙醇水溶液萃取出来的,试验目的是选择乙醇水溶液的合适浓度和用量,使分离出的白油最多. 根据经验,乙醇水溶液浓度变化范围为5090(体积百分比),用量范围为3070(重量百分比),精度为598第四章 优选法基础 作法:先横向对折,即将用量固定在50,用单因素的0618法选取最优浓度为80(即图610)的点3。而后纵向对折,将浓度固定在70,用0618法对用量进行优选,结果是点9较好。比较点3与点9的试验结果,点3比点9好,于是丢掉试验范
42、围左边的一半。在剩下的范围内再纵向对折,将浓度固定在80,对用量进行优选,试验点11、12的结果都不如3好,于是找到了好点,即点3(见表63),试验至此结束。99第四章 优选法基础试验序号18 号硅化油( 18g)乙醇水溶液浓度( % )乙醇水溶液用量(% )白油(克)备注120075501872655018638050188.4最好48550188.7色深有浓度59050168.267055185.477040185.987045187.197035187.3次好108045185.7118055185.8酸中带油多表6-3 用0.618法对原料用量进行优选的试验结果100第四章 优选法基础
43、图 用单因素的 0.618 法选取的最优浓度101第四章 优选法基础纵横对折三因素的情形图 三因素试验的三个平分平面图 因素A最好时的试验范围102第四章 优选法基础三、平行线法 在实际工作中常遇到两个因素的问题,且其中一个因素难以调变,另一个因素却易于调变。比如一个是浓度,一个是流速,调整浓度就比调整流速困难。在这种情形下用平行线法就比用纵横对折法优越。假设试验范围为一单位正方形。 即 0 x11,0 x21103第四章 优选法基础图 A1比A2好的试验范围图 A2比A1好的试验范围104第四章 优选法基础 例 6-10 “除草醚”配方试验,所用原料为硝氯化苯,2,4-二氯苯酚和碱,试验目的
44、是寻找 2,4-二氯苯酚和碱的最佳配比,使其质量稳定、产量高。 x1(碱)的变化范围:1. 11. 6(摩尔比) x2(酚)的变化范围:1. 11. 42(摩尔比)105第四章 优选法基础固定酚的用量为 1. 22(即 0. 382 处),对碱的用量进行优选,得最优用量为1. 22(点 A1)。再固定酚的用量 1. 30(即0. 618处),对碱的用量进行优选,得最优用量为 1. 30,即图 6上的点 A2,过 A1,A2 点作直线 L在直线 L上用单因素法进行优选(因为 A2 优于 A1,所以酚的用量低于 1. 22 时就不必做了),得最优点为 A3,即酚与碱的用量均为 1. 27。图 配方
45、试验106第四章 优选法基础 平行线法三因素的情形图 三因素的平行线法107第四章 优选法基础 这两个平行平面把立方体截成三块,对每一平行平面用(任何)两因素求出最优点,设最优点为 A1 和 A2(见图 6-15)。然后比较 A1,A2 上的试验结果。 若 A1 优于 A2(或 A2 优于 A1),则丢掉下边(或上边)的一块,再在余下的长方体中同法继续进行,重复进行多次,长方体不断缩小,直到得到满意的结果或达到预期的精度为止。108第四章 优选法基础平行线加速法109第四章 优选法基础什么是双因素盲人什么是双因素盲人爬山法?爬山法? 像盲人一样,在双因素解决问题时,边探索边前进,直到找到最佳点
46、为止,这就是双因素问题的盲人爬山法.四、双因素盲人爬山法110第四章 优选法基础 对某种物品镀银时,要选择氯化银和氰化钠的用量,使得镀银速度快,质量好.111第四章 优选法基础为此采用爬山法选择最佳点.起点:氰化钠85g/ml,氯化银55g/ml.步长:氰化钠10g/ml,氯化银5g/m1.试验过程如图所示.分析分析57080554085150123 46氯化银氯化钠图 爬山法112第四章 优选法基础 从起点1开始,向右试探,结果2比1好,继续向右试探,结果3比2好,再向右试探,结果4不如3好,回到3再向上试探,5比3好,继续向上试探,6比5好,再继续试探,直到其他三个方向不如6号,并且6的结果满足生产条件,即可以停止试验.113第四章 优选法基础测试池塘最深点问题,如果假定池塘的深度是双因素单峰的(这里的峰指的是最深点),你能选出合适的优选法迅速测试出最深点吗?114第四章 优选法基础