1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市朝阳区中考数学历年真题定向练习 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于x的方程中,一定是一元二次方程的是()Aax2
2、bx+c0B2ax(x1)2ax2+x5C(a2+1)x2x+60D(a+1)x2x+a02、如图,在中,则的值为( )ABCD3、若菱形的周长为8,高为2,则菱形的面积为( )A2B4C8D164、如图,将ABC绕点C按逆时针方向旋转至DEC,使点D落在BC的延长线上已知A32,B30,则ACE的大小是( )A63B58C54D565、若x1是关于x的一元二次方程x2ax2b0的解,则4b2a的值为( )A2B1C1D26、若数a使关于x的方程的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )A7B12C14D187、二次函数y(x2)25的对称轴是( )A直线xB
3、直线x5C直线x2D直线x28、如图,E为正方形ABCD边AB上一动点(不与A重合),AB4,将DAE绕着点A逆时针旋转90得到BAF,再将DAE沿直线DE折叠得到DME下列结论:连接AM,则AMFB;连接FE,当F,E,M共线时,AE44;连接EF,EC,FC,若FEC是等腰三角形,则AE44,其中正确的个数有()个A3B2C1D09、已知有理数在数轴上的位置如图所示,且,则代数式的值为( ) 线 封 密 内 号学级年名姓 线 封 密 外 AB0CD10、如图,在中,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )AB2C3D4第卷(非选择题 70分)二、填空题(5小题,每
4、小题4分,共计20分)1、如图,将一副直角三角板叠放在一起,使直角顶点重合于点,若COB50,则AOD_2、计算:_,_,_分解因式:_,_,_3、如图,是用若干个边长为1的小正方体堆积而成的几何体,该几何体的左视图的面积为_4、如图,在ABC中,点D、E分别在边AB、AC上,DEBC,将ADE沿直线DE翻折后与FDE重合,DF、EF分别与边BC交于点M、N,如果DE8,那么MN的长是_5、当x_时,二次根式有意义;三、解答题(5小题,每小题10分,共计50分)1、如图,已知在ABC中,ABAC,BAC80,ADBC,ADAB,联结BD并延长,交AC的延长线干点E,求ADE的度数2、计算:3、
5、某商店以每盏25元的价格采购了一批节能灯,运输过程中损坏了3盏,然后以每盏30元售完,共获利160元该商店共购进了多少盏节能灯? 线 封 密 内 号学级年名姓 线 封 密 外 4、先化简,再求值:a2b3ab22(3a2bab2),其中a1,b=-5、如图,射线、分别表示从点出发的向北、东、南、西四个方向,将直角三角尺的直角顶点与点重合(1)图中与互余的角是_;(2)用直尺和圆规作的平分线;(不写作法,保留作图痕迹)在所做的图形中,如果,那么点在点的_方向-参考答案-一、单选题1、C【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判
6、断即可【详解】解:A当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不符合题意;B2ax(x-1)=2ax2+x-5整理后化为:-2ax-x+5=0,不是一元二次方程,故此选项不符合题意;C(a2+1)x2-x+6=0,是关于x的一元二次方程,故此选项符合题意;D当a=-1时,(a+1)x2-x+a=0不是一元二次方程,故此选项不符合题意故选:C【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:是整式方程,只含有一个未知数,所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a0)2、C【分析】由三角函数的定义可知sin
7、A=,可设a=5k,c=13k,由勾股定理可求得b,再利用余弦的定义代入计算即可【详解】解:在直角三角形ABC中,C=90sinA=,可设a=5k,c=13k,由勾股定理可求得b=12k,cosA=,故选:C【点睛】本题主要考查了三角函数的定义,掌握正弦、余弦函数的定义是解题的关键3、B【分析】根据周长求出边长,利用菱形的面积公式即可求解【详解】菱形的周长为8, 线 封 密 内 号学级年名姓 线 封 密 外 边长=2,菱形的面积=22=4,故选:B【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底高是解题的关键4、C【分析】先根据三角形外角的性质求出ACD=63,再由ABC绕点C按逆时针方向旋
8、转至DEC,得到ABCDEC,证明BCE=ACD,利用平角为180即可解答【详解】解:A=33,B=30,ACD=A+B=33+30=63,ABC绕点C按逆时针方向旋转至DEC,ABCDEC,ACB=DCE,BCE=ACD,BCE=63,ACE=180-ACD-BCE=180-63-63=54故选:C【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到ABCDEC5、D【分析】将x=1代入原方程即可求出答案【详解】解:将x=1代入原方程可得:1+a-2b=0,a-2b=-1,原式=-2(a-2b)=2,故选:D【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程
9、的解的概念,本题属于基础题型6、C【分析】第一步:先用a的代数式表示分式方程的解再根据方程的解为非负数,x-30,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果【详解】解:,2a-8=x-3,x=2a-5,方程的解为非负数,x-30,解得a且a4, 线 封 密 内 号学级年名姓 线 封 密 外 ,解不等式组得:,不等式组无解,5-2a-7,解得a6,a的取值范围:a6且a4,满足条件的整数a的值为3、5、6,3+5+6=14,故选:C【点睛】本题考查分式方程的解、解一元一
10、次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键7、D【分析】直接根据二次函数的顶点式进行解答即可【详解】解:由二次函数y=(x+2)2+5可知,其图象的对称轴是直线x=-2故选:D【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键8、A【分析】正确,如图1中,连接AM,延长DE交BF于J,想办法证明BFDJ,AMDJ即可;正确,如图2中,当F、E、M共线时,易证DEA=DEM=67.5,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即
11、可解决问题;正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题【详解】解:如下图,连接AM,延长DE交BF于J,四边形ABCD是正方形,AB=AD,DAE=BAF=90,由题意可得AE=AF,BAFDAE(SAS),ABF=ADE,ADE+AED=90,AED=BEJ,BEJ+EBJ=90,BJE=90,DJBF,由翻折可知:EA=EM,DM=DA, 线 封 密 内 号学级年名姓 线 封 密 外 DE垂直平分线段AM,BFAM,故正确;如下图,当F、E、M共线时,易证DEA=DEM=67.5,在MD上取一点J,使得ME=MJ,连接EJ,则由题意可
12、得M=90,MEJ=MJE=45,JED=JDE=22.5,EJ=JD,设AE=EM=MJ=x,则EJ=JD=x,则有x+x =4,x=44,AE=44,故正确;如下图,连接CF,当EF=CE时,设AE=AF=m,则在BCE中,有2m=4+(4-m)2,m=44或-44 (舍弃),AE=44,故正确;故选A【点睛】本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题9、C【分析】首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解
13、【详解】解:由图可知:,故选:C【点睛】本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键10、B【分析】 线 封 密 内 号学级年名姓 线 封 密 外 由折叠的特点可知,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可【详解】解:沿折叠,使点落在点处,又,又为的中点,AE=AE,即,故选:B【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键二、填空题1、130130度【分析】先计算出,再根据可求出结论【详解】解:, 故答案为:1
14、30【点睛】本题考查了角的计算及余角的计算,熟悉图形是解题的关键2、 【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:,分解因式:,故答案为:;【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 3、3【分析】由题意,先画出几何体的左视图,然后计算面积即可【详解】解:根据题意,该几何体的左视图为:该几何体的左视图的面积为3;故答案为:3【点睛】本题考查了简单几何体的三视图,解题的关键
15、是正确的画出左视图4、4【分析】先根据折叠的性质得DADF,ADEFDE,再根据平行线的性质和等量代换得到BBMD,则DBDM,接着利用比例的性质得到FMDM,然后证明FMNFDE,从而利用相似比可计算出MN的长【详解】解:ADE沿直线DE翻折后与FDE重合,DADF,ADEFDE,DEBC,ADEB,FDEBMD,BBMD,DBDM, ,2,2,FMDM,MNDE,FMNFDE, ,MNDE84故答案为:4【点睛】本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键5、【分析】根据被开方数大于等于
16、0列式计算即可得解【详解】解:由题意得,2x+30,解得x,故答案为: 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查的知识点为:二次根式的被开方数是非负数,比较基础三、解答题1、110【分析】根据等腰三角形三线合一的性质可求BADCADBAC40,根据等腰三角形的性质可求BDA,再根据三角形内角和定理即可求解【详解】解:ABAC,BAC80,ADBC,BADCADBAC40,ADAB,BDA(18040)70,ADE180BDA18070110【点睛】本题考查的是三角形的外角的性质,等腰三角形的性质,掌握“等边对等角,等腰三角形的三线合一”是解本题的关键.2、【分析】原式各项
17、化为最简二次根式,去括号合并即可得到结果【详解】解:原式【点睛】此题考查了二次根式的加减法,涉及的知识有:二次根式的化简,去括号法则,以及合并同类二次根式法则,熟练掌握法则是解本题的关键3、50【分析】设购进x盏节能灯,列一元一次方程解答【详解】解:设购进x盏节能灯,由题意得25x+160=30(x-3)解得x=50,答:该商店共购进了50盏节能灯【点睛】此题考查了一元一次方程的实际应用,正确理解题意是解题的关键4、,【分析】先去括号,然后根据整式的加减计算法则化简,最后代值计算即可【详解】解: 线 封 密 内 号学级年名姓 线 封 密 外 ,当,时,原式【点睛】本题主要考查了整式的化简求值,去括号,含乘方的有理数混合计算,熟知相关计算法则是解题的关键5、(1)、(2)作图见解析;北偏东或东偏北【分析】(1)由题可知,故可知与互余的角;(2)如图所示,以O为圆心画弧,分别与OE、OA相交;以两交点为圆心,大于两点长度的一半为半径画弧,连接两弧交点与O点的射线即为角平分线;,进而得出P与O有关的位置(1)解:图中与互余的角是和;故答案为:、(2)如图,为所作;,平分,即点在点的北偏东方向或东偏北故答案为:北偏东或东偏北【点睛】本题考查了余角,角平分线以及坐标系中的位置解题的关键在于正确的求解角度