1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市昌平区中考数学考前摸底测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题中,是真命题的是()A一条线段上只有一个黄金分割点
2、B各角分别相等,各边成比例的两个多边形相似C两条直线被一组平行线所截,所得的线段成比例D若2x3y,则2、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B那么它爬行的最短路程为()A10米B12米C15米D20米3、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )A5或6B6或7C5或6或7D6或7或84、为保护人民群众生命安全,减少交通事故,自2020年7月1日起,我市市民骑车出行必须严格遵守“一盔一带”规定,某头盔经销商经过统计发现:某品牌头盔从5月份到7月份销售量的月增长率相同,若5月份销售200个,7月份销售288个,设月增长
3、率为x则可列出方程( )A200(+x)=288B200(1+2x)=288C200(1+x)288D200(1+x)=2885、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )A1个B2个C3个D4个6、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )A增加10%B增加4%C减少4%D大小不变7、已知4个数:,其中正数的个数有( )A1B C3D4 线 封 密 内 号学级年名姓 线 封 密 外 8、下列运动中,属于旋转运动的是( )A小明向北走了 4 米B一物体从高空坠下C电梯从 1 楼到 12 楼D小明在荡
4、秋千9、二次函数y(x2)25的对称轴是( )A直线xB直线x5C直线x2D直线x210、在实数范围内分解因式2x28x+5正确的是()A(x)(x)B2(x)(x)C(2x)(2x)D(2x4)(2x4+)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,l1l2l3,若AB2,BC3,AD1,CF4,则BE的长为_2、如图,在中,蚂蚁甲从点A出发,以1.5cm/s的速度沿着三角形的边按的方向行走,甲出发1s后蚂蚁乙从点A出发,以2cm/s的速度沿着三角形的边按的方向行走,那么甲出发_s后,甲乙第一次相距2cm3、将一张长方形的纸按照如图所示折叠后,点C、D两点分
5、别落在点、处,若EA平分,则_4、若与互为相反数,则代数式的值是_5、如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为时,梯子顶端靠在墙面上的点处,底端落在水平地面的点处,如果将梯子底端向墙面靠近,使梯子与地面所成角为,且,则梯子顶端上升了_米三、解答题(5小题,每小题10分,共计50分)1、在ABC中,BAC90,P是线段AC上一动点,CQBP于点Q,D是线段BQ上一点,E是射线CQ上一点,且满足,连接AE,DE(1)如图1,当ABAC时,用等式表示线段DE与AE之间的数量关系,并证明; 线 封 密 内 号学级年名姓 线 封 密 外 (2)如图2,当AC2AB6时,用等式表
6、示线段DE与AE之间的数量关系,并证明;(3)在(2)的条件下,若,AECQ,直接写出A,D两点之间的距离2、如图,点C是线段AB是一点,AC:BC1:3点D是BC的中点,若线段AC4(1)图中共有 条线段;(2)求线段AD的长3、如图,AB是O的直径,弦CDAB,垂足为E,F为AB延长线上一点,连接CF,DF(1)若OE3,BE2,求CD的长;(2)若CF与O相切,求证DF与O相切4、如图,在平行四边形ABCD中,已知ADAB(1)作BCD的角平分线交AD于点E,在BC上截取CFCD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接EF,猜想四边形CDEF的形状,并证明你的结论5、某
7、店以一共500元进价购得甲、乙两件商品,然后将甲、乙两件商品分别按和的利润标定出售价(1)如果按上述进价和售价进行交易,那么该店买卖这两件商品能否盈利260元?为什么?(2)如果该店按原定售价八折促销,某顾客同时购买了甲、乙两种商品,实际付款584元,那么甲、乙两商品原进价各多少元?-参考答案-一、单选题1、B【分析】根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断【详解】解:A一条线段上有两个黄金分割点,所以A选项不符合题意;B各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;C两
8、条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;D若2x=3y,则,所以D选项不符合题意故选:B【点睛】本题考查了命题:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可2、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可【详解】解:如图, 线 封 密 内 号学级年名姓 线 封 密 外 (1)AB;(2)AB15,由于15,则蚂蚁爬行的最短路程为15米故选:C【点睛】本题考查了平面展开-最短路径问题,要注意,展开时要根据实际情况将图形安
9、不同形式展开,再计算3、C【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到【详解】解:如图,原来多边形的边数可能是5,6,7故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况4、C【分析】设月增长率为x,根据等量关系用增长率表示7月份的销售量与销售288相等,可列出方程200(1+x)288即可【详解】解:设月增长率为x,则可列出方程200(1+x)288故选C【点睛】本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系列方程是解题关键5、C【
10、分析】解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:解不等式组得:,不等式组有且仅有3个整数解,解得:,解方程得:,方程的解为负整数,a的值为:-13、-11、-9、-7、-5、-3,符合条件的整数a为:-13,-11,-9,共3个,故选C【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解也考查了解一元一次不等式组的整数解6、B【分析】设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现
11、在的面积,与原面积比较即可得到答案【详解】设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x(1-20%)y=1.04xy,1.04xyxy=0.04xy,0.04xyxy100%=4%即这块长方形草地的面积比原来增加了4%故选:B【点睛】本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键7、C【分析】化简后根据正数的定义判断即可【详解】解:=1是正数,=2是正数,=1.5是正数,=-9是负数,故选C【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,
12、正确化简各数是解答本题的关键8、D【分析】旋转定义:物体围绕一个点或一个轴作圆周运动,根据旋转定义对各选项进行一一分析即可【详解】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,故选项A不合题意; B. 一物体从高空坠下,是平移,不属于旋转运动,故选项B不合题意; C. 电梯从 1 楼到 12 楼,是平移,不属于旋转运动,故选项C不合题意; D. 小明在荡秋千,是旋转运动,故选项D符合题意故选D 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查图形旋转运动,掌握旋转定义与特征,旋转中心,旋转方向,旋转角度是解题关键9、D【分析】直接根据二次函数的顶点式进行解答即可【详解】
13、解:由二次函数y=(x+2)2+5可知,其图象的对称轴是直线x=-2故选:D【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键10、B【分析】解出方程2x2-8x+5=0的根,从而可以得到答案【详解】解:方程2x2-8x+5=0中,a=2,b=-8,c=5,=(-8)2-425=64-40=240,x=,2x2-8x+5=2(x)(x),故选:B【点睛】本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键二、填空题1、【分析】由题意知;如图过点作交于点,交于点;有四边形 与四边形均为平行四边形,且有, ,;可得的值,由可知的值【详解】解:如图过点
14、作交于点,交于点;四边形 与四边形均为平行四边形, ,由题意知 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:【点睛】本题考查了平行线分线段成比例,平行四边形的性质,三角形相似等知识点解题的关键在于作辅助线将平行线分线段成比例应用于相似三角形中找出线段的关系2、4【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案【详解】解:根据题意,周长为:(cm),甲乙第一次相距2cm,则甲乙没有相遇,设甲行走的时间为t,则乙行走的时间为,解得:;甲出发4秒后,甲乙第一次相距2cm故答案为:4【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程3、120【
15、分析】由折叠的性质,则,由角平分线的定义,得到,然后由邻补角的定义,即可求出答案【详解】解:根据题意,由折叠的性质,则,EA平分,;故答案为:120【点睛】本题考查了折叠的性质,角平分线的定义,邻补角的定义,解题的关键是掌握所学的知识,正确的求出的度数4、2【分析】利用互为相反数的两个数的和为0,计算a的值,代入求值即可【详解】与互为相反数,3a-7+2a+2=0,解得a=1, 线 封 密 内 号学级年名姓 线 封 密 外 =1-2+3=2,代数式的值是2,故答案为:2【点睛】本题考查了相反数的性质,代数式的值,利用互为相反数的两个数的和为零确定字母的值是解题的关键5、2【分析】标字母C、D、
16、E如图,根据AB= 10米,可求EB=ABsin=10=6,根据CD=10米,可求DE=CD,在RtCDE中,CE=,求出BC=CE-BE=8-6=2即可【详解】解:标字母C、D、E如图AB= 10米,EB=ABsin=10=6,CD=10米,DE=CD,在RtCDE中,CE=,BC=CE-BE=8-6=2,梯子顶端上升了2米故答案为2【点睛】本题考查锐角三角函数的应用,勾股定理,线段和差,掌握锐角三角函数的定义,勾股定理,线段和差是解题关键三、解答题1、(1),理由见解析(2),理由见解析(3)【分析】(1)连接AD根据,可得,从而得到,再由,可得,从而得到,进而得到,即可求解;(2)连接A
17、D先证明,可得到,从而得到,再由勾股定理,即可求解;(3)根据题意可先证明四边形ADQE是矩形,可得到ADBP,再由,可得AP=4,再由勾股定理可得,然后根据三角形的面积,即可求解 线 封 密 内 号学级年名姓 线 封 密 外 (1)解:理由:如图,连接AD,即,在RtDAE中,;(2)解:,理由:如图,连接AD,即,在RtDAE中,;(3) 线 封 密 内 号学级年名姓 线 封 密 外 解: 由(2)得:DAE=90,AECQ,BPCQ,DQE=AEQ=90,PQAE,四边形ADQE是矩形,ADP=90,即ADBP,AC=6,AP=4,AC2AB6,AB=3,BAC=90, , , 【点睛】
18、本题主要考查了相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识,熟练掌握相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识是解题的关键2、6【分析】(1)根据图形写出所有线段即可;(2)首先求出BC=12,再求出CD=6,从而根据AC+CB=AD可求出结论【详解】解:(1)(1)图中有AC、AD、AB、CD、CB、DB共6条线段;故答案为:6;(2)AC:BC1:3,AC4 点D是BC的中点, 【点睛】本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想是解题的关键3、(1)8;(2)见解析【分析】(1)连接OC,利用勾股定理求解CE4,再利用垂径定理可得答案
19、;(2)证明 再证明 可得 从而可得结论.【详解】(1)解:连接OC,CDAB,CEDE, 线 封 密 内 号学级年名姓 线 封 密 外 OCOBOEBE325, 在RtOCE中,OEC90,由勾股定理得:CE2OC2OE2,CE25232,CE4, CD2CE8. (2)解:连接OD,CF与O相切,OCF90,CEDE,CDAB,CFDF, 又OFOF,OCOD, OCFODF,ODFOCF90,即ODDF 又D在O上, DF与O相切【点睛】本题考查的是圆的基本性质,垂径定理的应用,切线的性质与判定,证明OCFODF得到ODFOCF90是解本题的关键.4、(1)见解析(2)见解析【分析】(1
20、)根据要求作出图形即可(2)根据邻边相等的平行四边形是菱形证明即可【小题1】解:如图,射线CE,线段CF即为所求【小题2】结论:四边形CDEF是菱形理由:四边形ABCD是平行四边形,ADCB,DEC=ECF,CE平分DCB,DCE=ECF,DEC=DCE,DE=CD,CF=CD,DE=CF,DECF, 线 封 密 内 号学级年名姓 线 封 密 外 四边形CDEF是平行四边形,CD=CF,四边形CDEF是菱形【点睛】本题考查作图-基本作图,菱形的判定,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、(1)该店买卖这两件商品不可能盈利260元,原因见解析(2)甲商品的原进价为300元,乙商品的原进价为200元【分析】(1)利用获得的总利润=两件商品的进价之和50%,可求出两件商品均按50%的利润销售可获得的利润,由该值小于260即可得出结论;(2)设甲商品的原进价为x元,则乙商品的原进价为(500-x)元,根据某顾客按八折购买共付款584元,即可得出关于x的一元一次方程,解之即可得出结论(1)(元,该店买卖这两件商品不可能盈利260元(2)设甲商品的原进价为元,则乙商品的原进价为元,依题意得:,解得:,答:甲商品的原进价为300元,乙商品的原进价为200元【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键