1、Engineering EconomyChapter 3: Cost Estimation TechniquesThe objective of Chapter 3 is to present various methods for estimating important factors in an engineering economy study.Estimating the future cash flows for feasible alternatives is a critical step in engineering economy studies. Estimating c
2、osts, revenues, useful lives, residual values, and other pertinent data can be the most difficult, expensive, and time-consuming part of the study.Results of cost estimating are used for a variety of purposes. Setting selling prices for quoting, bidding, or evaluating contracts. Determining if a pro
3、posed product can be made and distributed at a profit. Evaluating how much capital can be justified for changes and improvements. Setting benchmarks for productivity improvement programs.The two fundamental approaches are “top-down” and “bottom-up.” Top-down uses historical data from similar project
4、s. It is best used when alternatives are still being developed and refined. Bottom-up is more detailed and works best when the detail concerning the desired output (product or service) has been defined and clarified.The integrated cost estimation approach has three major components. Work breakdown s
5、tructure (WBS) Cost and revenue structure (classification) Estimating techniques (models)Work Breakdown Structure (WBS) A basic tool in project management A framework for defining all project work elements and their relationships, collecting and organizing information, developing relevant cost and r
6、evenue data, and management activities. Each level of a WBS divides the work elements into increasing detail.A WBS has other characteristics. Both functional and physical work elements are included. The content and resource requirements for a work element are the sum of the activities and resources
7、of related subelements below it. A project WBS usually includes recurring and nonrecurring work elements.Cost and Revenue Structure Used to identify and categorize the costs and revenues that need to be included in the analysis. The life-cycle concept and WBS are important aids in developing the cos
8、t and revenue structure for a project. Perhaps the most serious source of errors in developing cash flows is overlooking important categories of costs and revenues.Estimating Techniques Order-of-magnitude estimates (30%) Semidetailed, or budget, estimates (15%) Definitive (detailed) estimates (5%)RE
9、MEMBER! The purpose of estimating is to develop cash-flow projectionsnot to produce exact data about the future, which is virtually impossible. Cost and revenue estimates can be classified according to detail, accuracy, and their intended use.The level of detail and accuracy of estimates depends on
10、time and effort available as justified by the importance of the study, difficulty of estimating the items in question, methods or techniques employed, qualifications of the estimator(s), and sensitivity of study results to particular factor estimates.A variety of sources exist for cost and revenue e
11、stimation. Accounting records: good for historical data, but limited for engineering economic analysis. Other sources inside the firm: e.g., sales, engineering, production, purchasing. Sources outside the firm: U.S. government data, industry surveys, trade journals, and personal contacts. Research a
12、nd development: e.g., pilot plant, test marketing program, surveys.These models can be used in many types of estimates. Indexes Unit technique Factor techniqueIndexes, I, provide a means for developing present and future cost and price estimates from historical data.k= reference year for which cost
13、or price is known.n= year for which cost or price is to be estimated (nk).Cn= estimated cost or price of item in year n.Ck= cost or price of item in reference year k.Indexes can be created for a single item or for multiple items (eqs. 3-1, 3-2).In 2002 Acme Chemical purchased a large pump for $112,0
14、00. Acme keys their cost estimating for these pumps to the industrial pump index, with a baseline of 100 established in 1992. The index in 2002 was 212. Acme is now (2010) considering construction of a new addition and must estimate the cost of the same type and size of pump. If the industrial pump
15、index is currently 286, what is the estimated cost of the new pump?Pause and solveThe unit technique is one that is widely known and understood.A “per unit factor” is used, along with the appropriate number of units, to find the total estimate of cost. An often used example is the cost of a particul
16、ar house. Using a per unit factor of, say, $120 per square foot, and applying that to a house with 3,000 square feet, results in an estimated cost of $120 x 3,000 = $360,000.This techniques is useful in preliminary estimates, but using average costs can be very misleading.The factor technique is an
17、extension of the unit technique where the products of several quantities are summed and then added to components estimated directly.C= cost being estimatedCd= cost of the selected component d estimated directlyfm= cost per unit of component mUm= number of units of component mParametric cost estimati
18、ng is the use of historical cost data and statistical techniques (e.g., linear regression) to predict future costs. Parametric models are used in the early design stages to get an idea of how much the product (or project) will cost, on the basis of a few physical attributes (such as weight, volume,
19、and power).The power-sizing technique (or exponential model) is frequently used for developing capital investment estimates for industrial plants and equipment.(both in $ as of the point in time for which the estimate is desired) (both in the same physical units)Acme Logistics provides “Less than tr
20、uck load” (LTL) services throughout the U.S. They have several hubs where they use cross-docking to move goods from one trailer to another. Acme built its last hub 10 years ago, and it had 36 dock doors. The cost index at that time was 140, and the total cost was $6 million. Acme plans a new hub tha
21、t will have 48 dock doors. The cost index now is 195, and Acme will use a capacity factor of 0.82. What is the estimated cost of the new hub?Pause and solveA learning curve reflects increased efficiency and performance with repetitive production of a good or service. The concept is that some input r
22、esources decrease, on a per-output-unit basis, as the number of units produced increases.Most learning curves assume a constant percentage reduction occurs as the number of units produced is doubled.Learning curve example: Assume the first unit of production required 3 hours time for assembly. The l
23、earning rate is 75%. Find (a) the time to assemble the 8th unit, and (b) the time needed to assemble the first 6 units.A cost estimating relationship (CER) describes the cost of a project as a function of design variables.There are four basic steps in developing a CER.Problem definitionData collecti
24、on and normalizationCER equation developmentModel validation and documentation第三章 技术经济分析中的时间因素第一节 概述第二节 资金时间价值的计算第三节 名义利率与实际利率第四节 等值计算第一节第一节 概述概述资金的时间价值一 资金在流通生产流通的循环中,与劳动者的生产活动相结合后,由劳动者创造了更多的价值,反映在资金数量上的增值,称为资金的时间价值。资金时间价值的度量二利息是衡量资金时间价值的绝对尺度。 利息= 到期应付(收)款总额 原借入(贷出)款总额%100本金息每单位时间内发生的利利率第一节第一节 概述概述
25、现金流量、现金流量表、现金流量图三现金流量现金流量表现金流量图资金运动形式具体表现为货币的支出和收入;反映在项目中,表现为现金流入和流出。 现金净流入量(NCF) = 现金流入(CFI) 现金流出(CFO)以表格的形式反映项目计算期内现金运动状况。 以图形反映项目计算期内现金运动状况。时间+20,00040,000+10,00030,00080,000+20,000+_0 1 2 3 4 5 6 7 8 9第一节第一节 概述概述现金流量表建设期投产期达产期0123456n生产负荷1.现金流入1.11.22.现金流出2.12.23.净现金流量(流入流出)时期流量名称第一节第一节 概述概述现金流量
26、、现金流量表、现金流量图三例:某项目拟在第一、二年末分别投入固定资产1,000万元,1,500万元,第三年起投产,投产当年即达设计生产能力。每年销售收入500万元,税金100万元,经营成本200万元,项目计算期18年,残值75万元,正常年份需流动资金150万元。试进行该项目现金流量分析,作出现金流量表及图。+425=500-100-200+75(残)+150(流动资金)+200=500-100-200 (税) (成本)-1,000-1650=1500+150(流动资金)0 1 2 3 4 5 6 16 17 18现金流量图第二节第二节 资金时间价值的计算资金时间价值的计算单利计算法一 只对本金
27、计息,即“利不生利”。 每期利息= 本金周期利率 n期利息=本金周期利率计息期数 I = P i n 期末本利和 F=P(1+in)例 现借入本金P=1000元,年利率i=6%,借期4年计算利息和本利和。 解:I=P i n=1000 6% 4=240元 F=P(1+in)=1000(1+6% 4)=1240元 显然,每年利息没有增值。第二节第二节 资金时间价值的计算资金时间价值的计算复利计算法二1. 复利概念本期的本金是上期的本利和。即“利滚利”。以下为例: 计算期 年初本金 年末利息 年末本利和 1 1,000 60 1060 2 1,060 63.6 1,123.6 3 1123.6 6
28、7.4 1,191 4 1191 71.46 1262.46第二节第二节 资金时间价值的计算资金时间价值的计算2. 复利计算公式)已知P求F:niPF)1 ( 1 2 3 n-1 nFP0式中: 为终值系数,记作:(F/P i n) ni)1 ( )已知F求P:niFP)1 ( 式中: 为现值系数,记作:( P/F,i,n)ni)1 (1)现值与未来值关系不计息1i2i3i1i2i3i Ft a)一次支付情形第二节第二节 资金时间价值的计算资金时间价值的计算复利计算公式 a)一次支付情形)未来值与现值关系不计息1i2i3i 1i2i3iPt结论:n,i越大,资金时间价值的影响越大。第二节第二节
29、 资金时间价值的计算资金时间价值的计算2. 复利计算公式 b) 等额支付系列情形)已知A求F 计息期内每期末发生一个相同金额的支付系列。A A A AA A0 1 2 3 4 n -1F0)1(321)1()1()1()1()1(iAiAiAiAiAFnnnnn对括号内的等比级数求和得:iiAiiAFnn1)1 (111)1 (iin1)1 (式中: 为等额系列的终值系数,记作: (F/A ,i,n)第二节第二节 资金时间价值的计算资金时间价值的计算2. 复利计算公式 b) 等额支付系列情形) 已知F求A 已知n期末的终值F,利率i ,求n期内每期末的等额系列金额A。1)1 (niiFA由上式
30、得:式中: 为等额偿还因子,记作:(F/A ,i,n)1)1 (nii 1 2 3 4 n-1 n0A A A A A AiiAiPiPFnnn1)1 ()1 ()1 (代入前式:nniiiAP)1 (1)1 (nniii)1 (1)1 (式中: 为等额现值因子,记作:(P/A ,i,n)第二节第二节 资金时间价值的计算资金时间价值的计算2. 复利计算公式c) 均匀梯度支付情形 第一期发生额为A,以后每期递增一个G,G,称为梯度量。0 1 2 3 4 n-1 n 1AGA 1GA21GA31GnA)2(1GnA) 1(1分解:第二节第二节 资金时间价值的计算资金时间价值的计算2. 复利计算公式
31、c) 均匀梯度支付情形0 1 2 3 4 n-1 n1A1A1A0 1 2 3 4 n-1 nGG2G3Gn)2( Gn) 1( F= ?第二节第二节 资金时间价值的计算资金时间价值的计算2. 复利计算公式c) 均匀梯度支付情形) 已知G求F:)(1)1 (AGiiAFn代替将1)1 ()1 ()1 ()1()1()1 ()1 ()1 ()1(12211221niiiiiGniiiiiGnnnniin1)1 (1)1 (niiiGFn式中: 为等额递增终值因子,记作: ( F/G,i,n)1)1 (1niiiniiGiiGiiGiiGFnnnnnn1)1 (1)1 (1)1 (1)1 ()1(
32、)2(21第二节第二节 资金时间价值的计算资金时间价值的计算2. 复利计算公式c) 均匀梯度支付情形) 已知G求P:niPF)1 ( )1 ()1 (1)1 (1nnniniiiiGP)1 ()1 (1)1 (1nnniniiii式中: 为等额递增系列的偿还终值因子。记作: (G/p,i,n)第二节第二节 资金时间价值的计算资金时间价值的计算2. 复利计算公式c) 均匀梯度支付情形) 已知G求A:)1)1 ()1)1 (nniiFAniiiGF)1)1 (1 (niniiGA式中: 为等额递增系列的偿还因子。记作: (A/G,i,n)1)1 (1 (1ninii第二节第二节 资金时间价值的计算
33、资金时间价值的计算复利计算法二3.利用复利表计算复利计息周期与复利周期一致。1本期末即下期初。2P发生在期初。3F发生在期末。4A发生在期末。5G发生在第二期末。6P与A;F与A;F与G;P与G;A与G的发生期限均按流量图所示。7约定条件第二节第二节 资金时间价值的计算资金时间价值的计算复利计算法二例 今有某项目投资P=100万元,投资年利率i=10%,问十年末共可得本利和多少? 解:万元)(4 .259%)101 (100)1 (10niPF例 若七年后想取得一笔资金200万元,年利率i=8%,问现在应一次存入多少? 解:万元)(7 .116%)81 (200)1 (7niFP例 年利率i=
34、5%,若八年内每年年末存入50万元,第八年末共得本利和多少? 解:(万元)45.477%51%)51 (501)1 (8iiAFn第二节第二节 资金时间价值的计算资金时间价值的计算复利计算法二例 若i=10%,五年内每年要取出50万元,最初应一次存入多少元? 解:(万元)54.189%)51%(51%)101 (50)1 (1)1 (55nniiiAP例 若投资1000万元,投资利率i=15%,要求投资在七年内回收,每年至少应等额回收多少? 解:(万元)4 .2401%)151 (%)151%(15000, 11)1 ()1 (77nniiiPA例 若年利率i=8%,第五年末需取出180万元,
35、五年内每年应等额存入多少元? 解:(万元)69.301%)81 (%81801)1 (5niiFA第二节第二节 资金时间价值的计算资金时间价值的计算复利计算法二例 某企业租赁机器,每一年付出租金4万,以后每年递增2万,共租赁5年,年利率i=8%。问:1)若采用一次付款方式,第一年出应一次付款多少? 2)若改用第五年末一次付清,应付多少? )1 ()1 (1)1 ()1 (1)1 (nnnnniniiiiGiiiAP%)81 (5%)81%(81%)81 (%82%)81%(81%)81 (455555万元)(7148.302)万元)(12.45%)81 (718.30)1 (5niPF答: 1
36、)第一年初一次应付30.7148万元 2)最后一年末一次应付45.12万元。解:1)第三节第三节 名义利率与实际利率名义利率与实际利率概念一1. 当计息周期和复利率周期一致时,名义利率与实际利率相等。2. 当计算复利的次数多于计算周期数时,名义利率与实际利率就有差异。第三节第三节 名义利率与实际利率名义利率与实际利率实际利率公式二设名义利率为r,每利率周期内计算m次,故每计算周期利率为r/m。利率周期实际利率为:mmrPF)1 ( 1)1 ()1 (mmmrpPmrPPPFi例 若年名义利率为12%,按月计息,问年实际利率为多少? 解:%68.121)12%121 (1)1 (12mmri第三
37、节第三节 名义利率与实际利率名义利率与实际利率连续复利三设m趋向于无穷大时,例 年名义利率为15%,若按连续复利计算,其连续复利率为多少? 解:11)1(lim 1)1(limrrrmmmmemrmrI重要极限%18.1617183. 2115. 0reI注:连续复利在实际借贷中很少运用,只在某些决策中采用。第三节第三节 名义利率与实际利率名义利率与实际利率连续复利三例 有两个贷款项目,一方案年名义利率为i=16%,每年计息一次;二方案i=15%,每月计息一次,问选择那个方案合适? 解: 方案1:实际利率 =16% 方案2:实际利率 1i%08.161)1215. 01 (122i方案。选择1
38、21 ii第四节第四节 等值计算等值计算等值的概念一是指不同时点不同金额的价值,在单个现金流量之间,单 个现金流量与系列现金流量之间,系列现金流量之间等效 时,称为等值。等值的计算二通常是计算现值,系列值或终值。第四节第四节 等值计算等值计算等值的计算二例 由于使用一项专利,预计将来要付的专利提成费如表。若年利率8%,求这些费用的现值。 年末 0 1 2 3 应付专利提成费/元 15,000 3,000 2,000 1,000解:0 1 2 315,0003,0002,0001,000P=15,00+3000(P/F,8%,1)+2,000(P/F,8%,2)+1000(P/F,8%,3) 查
39、(P/F,i,n)表得:P=15,000+3,0000.9259+2,000 0.8573+1000 0.7938 = 20286.1(元)第四节第四节 等值计算等值计算等值的计算二例 若复利率为年率8%,要使自今后第三年末可提取5000元,第8年末可提取10,000元,第十年末可提取9000元,三次将本利和提取完毕;问:1)应一次存入多少元? 2)若改为前五年筹集这笔款项,每年末应等额存入多少元? 解: 画现金流量图:P=?5,00010,0009,0000 1 2 3 4 5 6 7 8 9 101)P =5000(P/F,8%,3)+10,000(P/F,8%,8)+9000(P/F,8
40、%,10) =13,540.8(元)2)A=P(A/F,i,n)=13,540.8(A/F,8%,5)=13,540.8 0.2505 =3,392(元)第四节第四节 等值计算等值计算等值的计算二例 年利率15%,求下列现金流量的现值。 年末 0 1 2 3 4 5 6 7 8 9 现金流量 -200 900 1000 1000 1000 1200 1300 1400 1500 1600 解: 画现金流量图:0 1 2 3 4 5 6 7 8 9 -200100015001600900P=?140013001200 求P: P=-200+900(P/F,15%,1)+1000(P/A,15%,
41、3)(P/F,15%,1) +1200(P/A,15%,5)(P/F,15%,4)+100(P/G,15%,5)(P/F,15%,4) =5918.93(元)第四节第四节 等值计算等值计算等值的计算二例 某方案第一年末投资100万,第二年末投资150万,第三年起投产。投产第一年净收入30万元,以后每年净收入50万元,共可使用7年,投产时另投入流动资金40万元,届时回收残值15万元。年利率i=10%,求方案的现值。 解:305050+40+15=1050 1 2 3 4 5 6 7 8 9P=?150+40=190100P=-100(P/F,10%,1)-190(P/F,10%,2)+30(P/
42、F,10%,3) +50(P/A,10%,5)(P/F,10%,3)+105(P/F,10%,9) =-38.4551(万元)第四节第四节 等值计算等值计算等值的计算二例 某公司购置了一台机器投资12,000元,残值2,000元,年操作费用800元,每五年大修一次,花费2800元。若次机器寿命为20年,年利率10%,求机器的年等额成本。 解:12,0002800280028002,00020A=?0 1 2 3 4 5 10 15800A=-800-12,000+2,800(P/F,10%,5)+2800(P/F,10%,10) +2,800(P/F,10%,15)(A/F,10%,20)+2
43、000(A/F,10%,20) =-2,584.87 (元)注:有时在方案的经济评价中,还需计算报酬率和回收期。第四节第四节 等值计算等值计算等值的计算二例 现投资P=3,000元,五年后可望回收5,000元,问该投资的收益率为多少? 解:由 F=(F/P,i,n)可得: (F/P,i,5)=F/P=5000/3000=1.667查表: 当n=5时: =10%, (F/P,i,5)=1.6105 =12%, (F/P,i,5)=1.76231i2i可见i在10%12%之间。采用内插法:%)10%12(6105. 16723. 16105. 1667. 1%10i%781.10i中数小数小数大数
44、第四节第四节 等值计算等值计算等值的计算二例 某企业以分期付款得方式取得现值300万元得设备,每半年付款50万元,在第四年末全部付清。问付款的年名义利率和实际利率各为多少? 解:300万0.5 1 1.5 2 2.5 3 3.5 4 50万设半年利率为i ,共付8次,故A=P(A/P,i,8) (A/P,i,8)=A/P=50/300=0.1667查表得n=8时: (A/P,6%,8)=0.16104 (A/P,7%,8)=0.16747%23.141)88. 61 (1)1 (%76.132%88. 6%88. 6%116104. 016747. 016104. 01667. 0%62nri
45、ri年实际利率年名义利率第四节第四节 等值计算等值计算等值的计算二例 某企业贷款建设工程。现贷款200万元,年利率10%,第三年起投产,投产后每年收益40万元。问投产后多少年能还清本息(还清本息前用每年全部收益归还)。 解:0 1 2 3A=40万N+2P=200万投产前设投产后n年还本付息,先将投资算到第二年末。 =P(F/P,i,n)=200(F/P,10%,2)=242万元。然后计算n: =A(P/A,i,n) /A= (P/A,i,n)=242/40=6.052P2P2P查表得,当i=10%时:(P/A,10%,9)=5.759 (P/A,10%,10)=6.144答:投产后9.8年即
46、贷款后11.8年才能还清贷款本息。年8 . 9)910(795. 5144. 6759. 505. 69n第四节第四节 等值计算等值计算等值的计算二a)已知n,求i:(F/P,i,n), (A/P,i,n), (F/A,i,n)随i的增大而增大。分子中的中数减小数。 (P/F,i,n), (P/A,i,n), (A/F,i,n)随i的增大而减小。分子中的大数减中数。已知i,求n: (F/P,i,n), (P/A,i,n), (F/A,i,n)随n的增大而增大。 分子中的中数减小数。 (P/F,i,n), (A/P,i,n), (A/F,i,n)随n的增大而减小。 分子中的大数减小数。插入法的应
47、用原则习题习题1、某投资方案,第一、二年末分别投入固定资产投资1000万元,流动资金需用额为固定资产投资的10%,均为自有。固定资产形成率90%,残值率5%,按使用15年线性折旧,未形成固定资产原值的投资按10年摊销。第三年达产80%,第四年起全达产。达产年产量1.6万吨。销售价格500元/吨。固定成本150万元/年,单位可变成本200元/吨,其中60%为外购原材料、动力费。税金有:增值税,税率17%;城市维护建设税,税率5%;教育费附加,费率2%;所得税,税率33%。试进行该项目现金流量分析,列出现金流量表,作现金流量图。2、某厂拥有一台原值50,000元的设备,预计可以使用15年,残值为原
48、值的3%,采用直线折旧。若复利率8%,试计算回收残值及折旧对零期的时值,并分析计算结果的意义。习题习题3、以分期付款方式获得现值为4000万元的设备,十年内每年末支付,除第一年末支付1000万元外,其余为每年等额支付。如年复利率10%,问每年应支付多少?4、某公司以35000元购置了一台机器,每年维修费和使用费合计2500元。购置后第四年进行了一次大修,花费4000元,大修两年后以18000元出售,年复利率10%。问该机器使用中每年等额成本为多少?习题习题5、已知年利率10%,各年发生流量如表所示。试计算该流量系列的以下等值:(1)现值 (2)等额系列值(111年末)(3)终值。时点时点金额金
49、额时点时点金额金额时点时点金额金额0/42008600110053009500210064001040031007500113006、某人现年35岁,预计60岁退休。从61岁至85岁他希望每岁能在生日天取出2000元,作为生活补贴,这笔钱有35岁至60岁每年生日存入。若存款年利率为8%,每年应等额存入多少?习题习题7、为了某企业治理污染,地方某机构同意拨给该企业污染处理设备的第一次投资和10年使用维修费。首期投资预计10,000元,双方协议的每年维护修用费如下表:若年复利率10%,问该机构一次付给企业多少专款?时点时点12345678910维护修用费/元50010012515017520022
50、52502753008、求下图所示现金流量对零期的时值,该 均为已知:213,2100,GGAAAPi12345678910 11 12 130P0F13= ?A1A2A2+GA2+2G1A3+2G2A3+G2A3习题习题213,2100,GGAAAPi213,2100,GGAAAPi9、某企业以每月支付300元的付款方式购买一台现值6,000元的设备,分24月付清。问付款的年名义利率和实际利率为多少?10、某设备价格45,000元,第一年末付14,000元,以后每半年付4,000元,年名义利率16%,半年计息一次,多少年能付清价款?11、某企业购置一台设备,付款方式为:获得时付定金3万元,半