1、丹巴外国语学校2019-2020学年高二上学期第二次月考试卷数学卷丹巴县外国语学校2019-2020学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如图,空间四边形OABC中,点M在OA上,且,点N为BC中点,则等于( )ABCD2 已知等比数列an的前n项和为Sn,若=4,则=( )A3B4CD133 记集合T=0,1,2,3,4,5,6,7,8,9,M=,将M中的元素按从大到小排列,则第2013个数是( )ABCD4 若偶函数f(x)在(,0)内单调递减,则不等式f(1)f(lg x)的解集是( )A(0,10)B(,10)C(,+)D(0,)(10,+)5 某工厂产生
2、的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:小时)间的关系为(,均为正常数)如果前5个小时消除了的污染物,为了消除的污染物,则需要( )小时.A. B.C. D. 【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想. 6 已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是( )ABCD07 下列给出的几个关系中:;,正确的有( )个A.个 B.个 C.个 D.个8 直线l过点P(2,2),且与直线x+2y3=0垂直,则直线l的方程为( )A2x+y2=0B2xy6=0
3、Cx2y6=0Dx2y+5=09 f()=,则f(2)=( )A3B1C2D10如果随机变量N (1,2),且P(31)=0.4,则P(1)等于( )A0.1B0.2C0.3D0.411以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x00,y00)满足=,则S( )A2B4C1D112若命题p:x0R,sinx0=1;命题q:xR,x2+10,则下列结论正确的是( )Ap为假命题Bq为假命题Cpq为假命题Dpq真命题二、填空题13已知函数f(x)=sinxcosx,则=14设函数,其中x表示不超过x的最大整
4、数若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是15【启东中学2018届高三上学期第一次月考(10月)】已知函数在上是增函数,函数,当时,函数g(x)的最大值M与最小值m的差为,则a的值为_.16在复平面内,复数与对应的点关于虚轴对称,且,则_17在极坐标系中,点(2,)到直线(cos+sin)=6的距离为18在ABC中,角A,B,C所对的边分别为a,b,c,若ABC不是直角三角形,则下列命题正确的是(写出所有正确命题的编号)tanAtanBtanC=tanA+tanB+tanCtanA+tanB+tanC的最小值为3tanA,tanB,tanC中存在两个数互为倒数若tanA:t
5、anB:tanC=1:2:3,则A=45当tanB1=时,则sin2CsinAsinB三、解答题19已知直角梯形ABCD中,ABCD,过A作AECD,垂足为E,G、F分别为AD、CE的中点,现将ADE沿AE折叠,使得DEEC(1)求证:FG面BCD;(2)设四棱锥DABCE的体积为V,其外接球体积为V,求V:V的值202016年1月1日起全国统一实施全面两孩政策为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:生二胎不生二胎合计70后30154580后451055合计7525100()以这100个人的样本数据估计该市的总体数据,且以频
6、率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;()根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由参考数据:P(K2k)0.150.100.050.0250.0100.005k2.0722.7063.8415.0246.6357.879(参考公式:,其中n=a+b+c+d)21如图,已知AB是圆O的直径,C、D是圆O上的两个点,CEAB于E,BD交AC于G,交CE于F,CF=FG()求证:C是劣弧的中点;()求证:BF=FG22甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一
7、队获胜4场就结束比赛现已比赛了4场,且甲篮球队胜3场已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为()求甲队分别以4:2,4:3获胜的概率;()设X表示决出冠军时比赛的场数,求X的分布列及数学期望23已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 24已知二次函数f(x)=x2+2bx+c(b,cR)(1)若函数y
8、=f(x)的零点为1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(3,2),(0,1)内,求实数b的取值范围丹巴县外国语学校2019-2020学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解: =;又,故选B【点评】本题考查了向量加法的几何意义,是基础题2 【答案】D【解析】解:Sn为等比数列an的前n项和,=4,S4,S8S4,S12S8也成等比数列,且S8=4S4,(S8S4)2=S4(S12S8),即9S42=S4(S124S4),解得=13故选:D【点评】熟练掌握等比数列的性质是解题的关
9、键是基础的计算题3 【答案】 A【解析】进行简单的合情推理【专题】规律型;探究型【分析】将M中的元素按从大到小排列,求第2013个数所对应的ai,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案【解答】因为=(a1103+a2102+a310+a4),括号内表示的10进制数,其最大值为 9999;从大到小排列,第2013个数为99992013+1=7987所以a1=7,a2=9,a3=8,a4=7则第2013个数是故选A【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第
10、一个数),再找出第n个数对应的十进制的数即可4 【答案】D【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(,0)内单调递减,所以f(x)在(0,+)内单调递增,由f(1)f(lg x),得|lg x|1,即lg x1或lg x1,解得x10或0x故选:D【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题5 【答案】15 【解析】6 【答案】A【解析】解:取AB的中点C,连接OC,则AC=,OA=1sin =sinAOC=所以:AOB=120 则=11cos120=故选A7 【答案】C【解析】试题分析:由题意得,根据集
11、合之间的关系可知:和是正确的,故选C.考点:集合间的关系.8 【答案】B【解析】解:直线x+2y3=0的斜率为,与直线x+2y3=0垂直的直线斜率为2,故直线l的方程为y(2)=2(x2),化为一般式可得2xy6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题9 【答案】A【解析】解:f()=,f(2)=f()=3故选:A10【答案】A【解析】解:如果随机变量N(1,2),且P(31)=0.4,P(31)=P(1)=【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位11【答案】 A【解析
12、】解:椭圆方程为+=1,其顶点坐标为(3,0)、(3,0),焦点坐标为(2,0)、(2,0),双曲线方程为,设点P(x,y),记F1(3,0),F2(3,0),=,=,整理得: =5,化简得:5x=12y15,又,54y2=20,解得:y=或y=(舍),P(3,),直线PF1方程为:5x12y+15=0,点M到直线PF1的距离d=1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是F1PF2的内心故=2,故选:A【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题12【答案】A【解析】解:时,sinx0=1;x0R,sinx0=
13、1;命题p是真命题;由x2+10得x21,显然不成立;命题q是假命题;p为假命题,q为真命题,pq为真命题,pq为假命题;A正确故选A【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对R满足x20,命题p,pq,pq的真假和命题p,q真假的关系二、填空题13【答案】 【解析】解:函数f(x)=sinxcosx=sin(x),则=sin()=,故答案为:【点评】本题主要考查两角差的正弦公式,属于基础题14【答案】(1,) 【解析】解:当2x1时,x=2,此时f(x)=xx=x+2当1x0时,x=1,此时f(x)=xx=x+1当0x1时,1x10,此时f(x)=f(x1)=x1+1=x当1x2
14、时,0x11,此时f(x)=f(x1)=x1当2x3时,1x12,此时f(x)=f(x1)=x11=x2当3x4时,2x13,此时f(x)=f(x1)=x12=x3设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(2,1),D(4,1)时有3个不同的交点,当经过点B(1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(1,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根
15、据,利用数形结合是解决函数零点问题的基本思想15【答案】【解析】,因为在上是增函数,即在上恒成立,则,当时,又,令,则,(1)当时,则,则,(2)当时,则,舍。16【答案】-2【解析】【知识点】复数乘除和乘方【试题解析】由题知:所以故答案为:-217【答案】1 【解析】解:点P(2,)化为P直线(cos+sin)=6化为点P到直线的距离d=1故答案为:1【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题18【答案】 【解析】解:由题意知:A,B,C,且A+B+C=tan(A+B)=tan(C)=tanC,又tan(A+B)=,tanA+tanB=
16、tan(A+B)(1tanAtanB)=tanC(1tanAtanB)=tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,故正确;当A=,B=C=时,tanA+tanB+tanC=3,故错误;若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故错误;由,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45,故正确;当tanB1=时, tanAtanB=tanA+tanB+tanC,即tanC=,C=60,此时sin2C=,sinAsinB=sinA
17、sin(120A)=sinA(cosA+sinA)=sinAcosA+sin2A=sin2A+cos2A=sin(2A30),则sin2CsinAsinB故正确;故答案为:【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档三、解答题19【答案】 【解析】解:(1)证明:取AB中点H,连接GH,FH,GHBD,FHBC,GH面BCD,FH面BCD面FHG面BCD,GF面BCD(2)V=又外接球半径R=V=V:V=【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E点三条棱互相垂直,故棱锥的外接球半径与以AE,CD,DE为棱长的长方体
18、的外接球半径相等,求出外接球半径是解答本题的关键点20【答案】 【解析】解:()由已知得该市70后“生二胎”的概率为=,且XB(3,),P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,其分布列如下:X0123P(每算对一个结果给1分)E(X)=3=2()假设生二胎与年龄无关,K2=3.0302.706,所以有90%以上的把握认为“生二胎与年龄有关”21【答案】 【解析】解:(I)CF=FGCGF=FCGAB圆O的直径CEABCBA=ACECGF=DGACAB=DACC为劣弧BD的中点(II)GBC=FCBCF=FB同理可证:CF=GFBF=FG【点评】本题考查的知识点圆周角定理
19、及其推理,同(等)角的余角相等,其中根据AB是圆O的直径,CEAB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键22【答案】 【解析】解:()设甲队以4:2,4:3获胜的事件分别为A,B,甲队第5,6场获胜的概率均为,第7场获胜的概率为,甲队以4:2,4:3获胜的概率分别为和()随机变量X的可能取值为5,6,7,P(X=6)=,P(X=7)=,随机变量X的分布列为 X 5 6 7p【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力23【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3
20、上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 24【答案】 【解析】解:(1)1,1是函数y=f(x)的零点,解得b=0,c=1(2)f(1)=1+2b+c=0,所以c=12b令g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)xb1,关于x的方程f(x)+x+b=0的两个实数根分别在区间(3,2),(0,1)内,即解得b,即实数b的取值范围为(,)【点评】本题考查了二次函数根与系数得关系,零点的存在性定理,属于中档题