1、2021年全国统一高考数学试卷(理科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)设集合Mx|0x4,Nx|x5,则MN()Ax|0xBx|x4Cx|4x5Dx|0x52(5分)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A该地农户家庭年收入低于4.5万元的农户比率估计为6%B该地农户家庭年收入不低于10.5万元的农户比率估计为10%C估计该地农户家庭年收入的平均值不超过6.5万元D估计该地有一半以上的农户
2、,其家庭年收入介于4.5万元至8.5万元之间3(5分)已知(1i)2z3+2i,则z()A1iB1+iC+iDi4(5分)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L5+lgV已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(1.259)A1.5B1.2C0.8D0.65(5分)已知F1,F2是双曲线C的两个焦点,P为C上一点,且F1PF260,|PF1|3|PF2|,则C的离心率为()ABCD6(5分)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G该正方体截去
3、三棱锥AEFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()ABCD7(5分)等比数列an的公比为q,前n项和为Sn设甲:q0,乙:Sn是递增数列,则()A甲是乙的充分条件但不是必要条件B甲是乙的必要条件但不是充分条件C甲是乙的充要条件D甲既不是乙的充分条件也不是乙的必要条件8(5分)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影A,B,C满足ACB45,ABC60由C点测得B点的仰角为15,BB与CC的差为100
4、;由B点测得A点的仰角为45,则A,C两点到水平面ABC的高度差AACC约为()(1.732)A346B373C446D4739(5分)若(0,),tan2,则tan()ABCD10(5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为()ABCD11(5分)已知A,B,C是半径为1的球O的球面上的三个点,且ACBC,ACBC1,则三棱锥OABC的体积为()ABCD12(5分)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x1,2时,f(x)ax2+b若f(0)+f(3)6,则f()()ABCD二、填空题:本题共4小题,每小题5分,共20分。13(5分)曲线y
5、在点(1,3)处的切线方程为 14(5分)已知向量(3,1),(1,0),+k若,则k 15(5分)已知F1,F2为椭圆C:+1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|F1F2|,则四边形PF1QF2的面积为 16(5分)已知函数f(x)2cos(x+)的部分图像如图所示,则满足条件(f(x)f()(f(x)f()0的最小正整数x为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,
6、为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K2P(K2k)0.0500.0100.001k3.8416.63510.82818(12分)已知数列an的各项均为正数,记Sn为an的前n项和,从下面中选取两个作为条件,证明另外一个成立数列an是等差数列;数列是等差数列;a23a1注:若选择不同的组合分别解答,则按第一个解答计分19(12分)已
7、知直三棱柱ABCA1B1C1中,侧面AA1B1B为正方形,ABBC2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BFA1B1(1)证明:BFDE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?20(12分)抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:x1交C于P,Q两点,且OPOQ已知点M(2,0),且M与l相切(1)求C,M的方程;(2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与M相切判断直线A2A3与M的位置关系,并说明理由21(12分)已知a0且a1,函数f(x) (x0)(1)当a2时,求f(x)的单调区间;(2)若曲线y
8、f(x)与直线y1有且仅有两个交点,求a的取值范围(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程(10分)22(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为2cos(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为(1,0),M为C上的动点,点P满足,写出P的轨迹C1的参数方程,并判断C与C1是否有公共点选修4-5:不等式选讲(10分)23已知函数f(x)|x2|,g(x)|2x+3|2x1|(1)画出yf(x)和yg(x)的图像;(2)若f(x+a)g(x),求a的取值范围