1、【高中数学竞赛专题大全】 竞赛专题4 平面向量(50题竞赛真题强化训练)一、单选题1(2018全国高三竞赛)已知的外接圆圆心为,.则().A.B.CD2(2019全国高三竞赛)设为所在平面内一动点.则使得取得最小值的点是的().A外心B内心C重心D垂心3(2018全国高三竞赛)设是所在平面上的一点,用、分别表示向量、若,则是的A内心B外心C重心D垂心4(2019全国高三竞赛)如图,在的边上做匀速运动的三个点、,当时,分别从、出发,当时,恰好同时到达、那么,这个运动过程中的定点是的()A内心B外心C垂心D重心5(2018全国高三竞赛)如图,在凸四边形中,且.则等于().ABCD6(2018全国高
2、三竞赛)已知P为ABC内一点,且满足2PA+3PB+4PC=0,那么,等于.A1:2:3B2:3:4C3:4:2D4:3:27(2020浙江温州高一竞赛)已知单位向量,的夹角为60,向量,且,设向量与的夹角为,则的最大值为()ABCD8(2018全国高三竞赛)平面上的两个向量、满足,且,.若向量,且.则的最大值是()AB1C2D49(2018陕西高三竞赛)在边长为8的正方形中,是的中点,是边上一点,且,若对于常数,在正方形的标上恰有6个不同的点,使,则实数的取值范围是ABCD二、填空题10(2018吉林高三竞赛)如图,在直角三角形ABC中,点P是斜边AB上一点,且,那么_.11(2019全国高
3、三竞赛)设的面积为1,边AB、AC的中点分别为E、F,P为线段EF上的动点,则的最小值为_12(2019全国高三竞赛)设是所在平面上一点,满足.若,则_.13(2019全国高三竞赛)在ABC中,已知,设0为ABC的内心,且.则+=_14(2021全国高三竞赛)已知向量,则的最大值是_15(2019全国高三竞赛)在正四面体中,设,记和所成的角为则_16(2019全国高三竞赛)如图,已知是的重心,若过点,且,则_.17(2021全国高三竞赛)中,A、B、C的对边分别为a、b、c,O是的外心,点P满足,若,且,则的面积为_18(2021全国高三竞赛)已知平面单位向量,且,记,则y的最大值为_19(2
4、021全国高三竞赛)已知点A满足,B、C是单位圆O上的任意两点,则的取值范围是_20(2020浙江高三竞赛)已知,为非零向量,且,则的最大值为_.21(2021全国高三竞赛)已知两个非零向量满足,则的最大值是_22(2021全国高三竞赛)设P是所在平面内一点,满足,若的面积为1,则的面积为_.23(2021全国高三竞赛)已知为三内角,向量.如果当最大时,存在动点,使得成等差数列,则最大值为_.24(2021全国高三竞赛)如图,在中,是边上一点,且若点满足与共线,则的值为_25(2021全国高三竞赛)若平面向量的模均在区间内,则的取值范围是_26(2019广西高三竞赛)已知点P(2,5)在圆上,
5、直线l:与圆C相交于A、B两点,则_ .27(2019甘肃高三竞赛)ABC的三边分别为a、b、c,点O为ABC的外心,已知,那么的取值范围是_ .28(2019四川高三竞赛)设正六边形ABCDEF的边长为1,则_ .29(2019重庆高三竞赛)已知向量满足,且,若为的夹角,则_ .30(2018山东高三竞赛)在中,的平分线交于,且有若,则_31(2018河北高三竞赛)设点O为三角形ABC内一点,且满足关系式: _.32(2018全国高三竞赛)在等腰ABC中,已知,点D、E、F分别在边AB、BC、CA上,且AD =DB=EF=1若,则的取值范围是_33(2018全国高三竞赛)在平面直角坐标系中,
6、已知O为原点,点,动点C在圆上运动,则的最大值为_34(2019全国高三竞赛)如图,在中,已知为的中点,点、分别在边、上,且,则_35(2018全国高三竞赛)已知为边上的一点, 为内一点,且满足,.则 _.36(2018全国高三竞赛)已知是的外心.若,且,则_.37(2018全国高三竞赛)在ABC中,已知A=,记向量则与的夹角等于_.38(2018全国高三竞赛)如图,设分别为的重心、垂心,为线段的中点,外接圆的半径则 =_39(2019全国高三竞赛)如图,分别是正六边形的对角线、的内分点,且,若、三点共线,则_.40(2019全国高三竞赛)设实常数k使得方程在平面直角坐标系中表示两条相交的直线
7、,交点为P.若点A、B分别在这两条直线上,且,则_.41(2018全国高三竞赛)在中,.沿向量的方向,点将线段分成了等份.设,.则_.42(2019全国高三竞赛)设点在的外部,且.则_.43(2018全国高三竞赛)已知向量、满足,且.则的最小值为_.44(2018江苏高三竞赛)在中,且,设为平面上的一点,则的最小值是_.45(2018贵州高三竞赛)已知O为ABC所在平面上一定点,动点P满足,其,则P点的轨迹为_46(2021全国高三竞赛)已知平面向量,满足,若,那么的最小值为_.47(2019贵州高三竞赛)在ABC中,.则_ .48(2021全国高三竞赛)已知三个非零向量、,满足(其中为给定的正常数)则实数t的最小值为_三、解答题49(2020浙江温州高一竞赛)若平面上的点满足(1)求的最大值;(2)设向量,定义运算若,求的取值范围(其中为坐标原点)50(2021全国高三竞赛)已知点,其中,且坐标原点O恰好为的重心,判断是否为定值,若是,求出该定值;若不是,请说明理由