1、 第第2章章.连续时间信号的离散处理连续时间信号的离散处理 2.1、数字信号处理系统的基本组成、数字信号处理系统的基本组成 大多数数字信号处理的应用中,信号为来自不同模拟信号源,这些模拟 信号(电压或电流)通常为连续时间信号。应用数字信号处理(DSP)主要有三个原因:1)滤波:滤除信号中来自周围环境的干扰或噪声;2)检测:检测淹没在噪声中的特定信号(如雷达或声纳系统中),当检测 到的信号超过给定的阈值则认为目标信号存在,反之认为不存在;3)压缩:当信号转换到另外一个域后,在变换域上更容易分辨信息的重 要程度,对重要部分分配多的比特数,次要部分分配尽可能少的比特 数,达到压缩的目的(如DCT算法
2、)。在所有这些应用中将面临一个相同的问题:如何将连续时间信号转换成适合计算机或DSP处理器处理的数据?模数转 换器(ADC)实现。如何将计算机数据转换成适合模拟设备(如扬声器)输出连续时间 信号?数模转换器(DAC)实现。通常,信号在采样前需要前置去混滤波;信号在输出前需要后置 重构滤波,即 圆滑输出。如声卡:声卡包含了数字信号处理系统的基本组成:上述系统中存在两类信号:连续时间信号x(t)、y(t);数字信号x(n)、y(n)。ADC不仅用于采样,而且对采样后的信号进行量化处理(每个采样点的值用有限比特数表示,引入量化误差)。2.2 2.2 连续时间信号的抽样连续时间信号的抽样一、一、理想抽
3、样后信号的频谱理想抽样后信号的频谱 抽样抽样:现实生活中大多数信号为连续时间信号,但数字信号处理时使用的是离散时间信号。将连续时间信号转换成离散时间信号的过程叫抽样。抽样可由称为A/D变换器的器件完成:量化结果声卡 抽样器抽样器 T Ts s 信号信号 频谱频谱nsnTttP)()(nsaaanTttxtPtxtx)()()()()(dte)t(x)j(X)t(xtjaaFTa)(txa(t)ax抽样输出tTs)(txa)(txa模拟输入)(txa周期性抽样函数)(tPsTssTntnTtP)1(,0)(连续时间t 为周期函数,可用傅立叶级数表示:其中mtsjm eT1(t)Ps抽样角频率ss
4、T2)(tP msastmjmastjatjaajmjXTdtetxTdtetPtxdtetxjXs)(1)(1)()()()()(抽样信号的频谱是原模拟信号的频谱沿频率轴每间隔抽样角频率s重复出现一次。幅度为原来的1/Ts。dte)t(x)j(X)t(xtjaaFTamtsjmeT1txtxsaa)()(如果信号 是实带限信号,且最高频率 不超过 :则抽样后序列的频谱不会发生混叠(下图黑色)。2/s2/s(t)ax(t)ax2/s)(jXa)(jXa02/s002/s)(jXa)(jXa02/s如果信号 是实带限信号,但最高频率 超过 :则抽样后序列的频谱发生混叠!(下图红色)0m1m1m0
5、0s2ms2s11/Ts例:抽样不足导致的信号失真:在频率域迭加,在时间域的失真.例:抽样不足导致的信号失真:在频率域迭加,在空间域的失真。二、奈奎斯特抽样频率二、奈奎斯特抽样频率(Nyquist rate)抽样过程看似不可避免丢失了一些信息(如nTst/Ts区域有较多的高频分量,表现在时域上就是恢复出的模拟信号是台阶。因此,通常在DAC后需要加平滑低通滤波器滤除多余的高频分量。2/s)(jXa0m1m1m0s2ms2s零阶保持器输出的频谱为零阶保持器频响H(j)与 相乘)(jXa缺点:恢复出的模拟信号是台阶包含多余的高频分量。可用重构(重构(平滑平滑)滤波器滤波器去除高频分量,使输出波形变得
6、圆滑。练习题:练习题:判断如下说法是否正确:零阶保持器是非理想低通滤波器,对满足奈奎斯特采样定理的采样信号不能不失真恢复出原始模拟信号,其原因是滤波结果含有带外高频分量。(Yes)2.3 量化误差量化误差 1 1、概述、概述 模数转换器(模数转换器(ADC)将模拟信号转化为数字信号,具体应完成抽样抽样和量化编码量化编码的工作。抽样已在前面介绍。其中量化编码是将抽样值用二进制编码表示后,并以舍入舍入或截尾截尾方法截成预先规定的长度,形成数字信号。抽样保持抽样保持量化编码量化编码)(txa)(nx)t(xa二进制表示的数字信号:有限精度离散时间点上采样信号:无限精度量化误差 数字系统中通常有三种三
7、种有限字长引起误差的因素:A/D将模拟输入信号xa(t)变为离散电平(数字信号x(n)时产生的量化效应系统函数H(z)的系数(ai,bi 等)用有限位二进制数表示时产生的量化效应 数字运算中,为限制结果数据位数而进行尾数处理以及为防止溢出而压缩信号电平的有限字长效应二进制数的表示二进制数的表示 定点表示:定点表示:二进制小数点在数码中的位置是固定不变的,小数点紧跟随在符号位后(符号位0,1分别表示正、负数),数的本身只有小数部分,称为“尾数”。1)原码原码:一个(b+1)位码,其中 位符号位,如x=0.101 表示x=+0.625;x=1.101表示x=-0.625.2)反码反码:正数的反码与
8、原码表示一样,负数负数的反码是将尾数中1变0,0变1,如x=-0.625(1.101 原码),反码则为x=1.010b 210,.)(2)1(00十进制表示biiix05.021125.023高位低位biiibx102)21(3)补码补码:正数的补码和原码一样,负数负数的补码是反码最低位上加1 x=-0.625的补码x=1.011.biiix102 浮点表示浮点表示 cMx2M 尾数 尾数字长的最高位为1(规格化形式)指数部分c 阶码如:x=0.112010表示十进制数 x=0.7522=3)15.0(M正数的原码、反码和补码形式一样正数的原码、反码和补码形式一样c2 两种表示的特点两种表示的
9、特点 定点制1)加减法不增加字长,但可能溢出2)乘法字长一倍,不会溢出,但对结果需作截取或舍入处理3)精度低,动态范围小 浮点制 1)加法需使两个数的阶码相等(对阶),并对结果尾数作截尾或舍入处理2)乘法是尾数相乘,阶码相加,对结果尾数截尾处理或舍入处理3)精度高,动态范围大 定点制的量化误差定点制的量化误差 两种量化方式:截尾截尾和舍入舍入。字长为(b+1)的寄存器,可表示的最小数最小数 q=2-b,如:0.0.01。因此,Vmax q=Vmax 2-b =Vmax 1/2b 称为量化宽度量化宽度或量化阶量化阶,这里Vmax为目标信号的最大范围。量化误差 E=x-x这里x表示x的量化值。)0
10、01(125.0)111(875.0125.023qb=33210,.x(1)截尾误差:)截尾误差:对于正数正数,原、反、补码形式相同。总是小于或等于零,当上式 全为1时,最大误差bTbbbbxx 210121210,xExTT112bbiiiTEi)1(221bbbb因一般,)(222111bbbbiiiTE0ETq b1=,无限精度对于负数负数,三种码表示形式不相同,误差也不一样。负数的原码:xExTT112bbiiiqET0 xExTT)(222111bbbbiiiqET0 xExTT负数的反码:负数的补码:111221bbiiibiii0ETqTxxqq补码量化曲线qqxTx原码、反码
11、量化曲线0ETq正数:qET0负数原码、反码:0ETq负数补码:xxqqT34.3qqT6.1(2)舍入误差)舍入误差:对定点数x作舍入处理到b位,是通过尾数的b+1位上加1,然后截取到b位实现,舍入之后的量化间距:bq 2例如:b=2 x=0.0010 xR=0.01 x=0.1001 xR=0.10 对于原码、反码和补码,误差总是在原码、反码和补码,误差总是在 之间。ER =x R-x -q/2 E R q/22q。qqRxx舍入处理的量化曲线22qEqR和补码:正、负数的原码、反码qqR28.1 2 2、A/DA/D变换的量化效应变换的量化效应ADC的量化效应:的量化效应:ADC具有两个
12、功能。采样:采样:将模拟信号xa(t)转换成离散序列;量化:量化:将离散序列的每个采样值转换成 b 位二进制数字信号(尾数)。量化过程将产生误差!采样器)(txa)()(sanTxnx量化器(b位))()(定点制nxA/D(采样周期Ts或速率 1/Ts,b 位))()()()(量化量化或舍入截尾无限精度RTnxQnxnTxnxsa无限精度有限精度采样)(txa)()(sanTxnx+)()()(nenxnxe(n)等效xExTTxExRR量化 x(n)是一个序列,对整个量化过程应作统计分析,量化误差量化误差e(n)可假定:e(n)平稳随机序列 e(n)与x(n)不相关 e(n)是白噪声(自身不
13、相关)e(n)均匀等概率 1432 由前面分析,截尾截尾和舍入舍入两种量化方式对于补码有:-q0ePT(e)1/q1/qPR(e)-q/20q/2补码截尾q=2-b补码舍入e假定:Vmax=1补码截尾时均值:maxV)2/()()()(121limqdeeePneEneNmTNNnNe表示误差的均值2max22222V12/)()()(|)(|121lim)(qdeePmemneEmneNTeeeNNnNe2max22V12/0)(qmee补码舍入时:两种量化方式误差均值不同,方差一样,字长b越大,q(=2-b)越小,量化噪声越小。表示误差的功率补码截尾时方差:ADC量化信噪比:量化信噪比:信
14、号功率(能量)与噪声功率之比 S/N,其dB表示为:)3(110)1(02.6)2.12(110)12/(110)lg(102222222xxbxexgbgqgSNR例:x(n)在-1+1之间均匀分布,且均值为0。A/D变换的SNR?类似舍入量化噪声概率分布-11x(n)P(x)1/q假定:Vmax=1在信号功率不变的情况下,字长增加一位,SNR提高自6dB在量化字长不变的情况下,(信号功率)越大,SNR越高2x12.6610;548)1(6)3/13lg(10)1(02.63/1)(22dBSNRbdBSNRbbbSNRnxEx不同的信号其功率计算公式不同。当信号为正弦波时,如何计算其功率?
15、)2(12/22qqx幅度为A、周期为T的正弦波信号的功率为:2221)4cos(2121)2(sin)2sin(122/2/22/2/22/2/22/2/2222/2/2|AtTAdtTAdttTTAdttTTAdttTATTTTTTTTTTTx2/)2cos1(sin23、量化噪声通过线性移不变系统量化噪声通过线性移不变系统x(n)+e(n)(nxH(z)或h(n)()()(nenynyf系统输出端输出噪声)()()()()()(nhnenxnhnxny)()()()()()(nenynhnenhnxf)()()(nhnenefejekNNnNkNNnkNfmeHmkhkneNkhknek
16、hNm)()()(121(lim)()()(121lim0 若e(n)舍入噪声,均值为零。q=2-b假定系统因果、稳定)()()()()(121lim)(22mnemhknekhNneEmNNnkNff)(22neEff 00)()()()(mllnemneElhmh2)()()(elmlnemneE如果e(n)白色(互不相关),则)()()(nhnenef 0022)()()(mleflmlhmh2222022)(21)()(21)(1ejecemfdeHzdzzHzHjmhH(z)的全部极点在单位园内,积分c为单位园上围线积分。已知h(n)已知H(z)已知H(ej)帕斯瓦尔定理(DTFT的
17、性质)0022)()()(mleflmlhmh例:设有一(b=7)A/D变换器,它的输出 经下列传递函数的IIR滤波器 H(z)=z/(z-0.999)此输出滤波器的量化噪声功率:)(nx3/212/1622qezdzzzjzdzzHzHjccef)999.0)(999.0(121)()(21122100254.025.500)32(25.5001622ef根据留数定理可得:量化噪声在输出端放大了很多倍放大了很多倍,此时应尽可能减少ADC的量化噪声。极点非常靠近单位圆。25.500999.011)999.0999.0(222022eennef2022)(emfmh例:设有一A/D变换器,它的输
18、出 经下列系统函数的因果滤波器 H(z)=z/(z-0.8)此滤波器的冲激响应为量化噪声功率:)(nx)(8.0)(nunhn量化噪声在输出端只有输入端的2.78倍。78.264.011)8.08.0(22022eennef极点离单位圆距离不同,对输入噪声的放大也不同例:若低通滤波器的带宽为/10且幅度为1,则可得输出端量化噪声功率只为输入端的10%。2210/10/2221.0121)(21eeejfddeH4 4、A/DA/D变换的采样频率与量化比特数的关系变换的采样频率与量化比特数的关系 假定所需要数字化的信号为x(t),其带宽为FB。若采样频率Fs2FB,用带宽为B B=2=2(F(F
19、B B/F/Fs s)的数字滤波器对采样后的信号进行滤波,该滤波器能衰减量化噪声衰减量化噪声。满足耐奎斯特采样定理)2(2121)(21222222BseesBeejfFFFFddeHBBBBB=2(FB/Fs)假若采样频率Fs2FB,则输出方差变小了,。那么其方差可由比特数b表示为22efbsBesBfVFFFF22max22222式中取决于噪声的概率密度分布。假定采样频率分别为Fs1和Fs2,量化比特数分别为b1 和b2,若要求得到的输出量化噪声 相同,则21222122bsbsFF由上式得到采样频率分别为Fs1和Fs2和量化比特数分别为b1 和b2的关系为21212log21ssFFbb
20、2f若Fs1b2。例:一带宽为FB=4KHz的信号,采样频率分别为Fs1=8KHz,且采样比特数为b1=16比特。若采样频率Fs2=16Fs1=128KHz,则量化比特数b2=14比特。结论结论:如果加大采样频率(即增加每秒内采样的点数),则可以降低采样精度(每个采样点用较少的比特表示)而不失数据的准确性(输出的量化噪声功率不变)。2.4、基于预测的采样法:、基于预测的采样法:和和-调制调制 上面介绍了信号数字化通常的方法,是否还存在其他高效的数字化方法?预测方法。除白噪声外,信号相邻的两个采样x(n)和x(n-1)并不完全独立。每个采样点可表示为两部分之和这里,表示基于n以前采样值对x(n)
21、的预测值,w(n)表示预测值与真实值之间的误差(也称作残差)。预测器的形式取决于信号的统计特性。假定希望得到的预测器形式简单且需数字化的信号是慢变化的(相邻两个采样间变化不大),则对x(n)最简单的预测仅取决于x(n-1),即)(nx)()()(nwnxnx)1()(nxnx将其代入预测式,则)()1()(nwnxnx结合上述两个等式,可得残差w(n)与预测器的z变换表达式)(1)()()(1zWzzzXzXzzX因此,有)()()(nwnxnx同时有)()(/)(1预测器的系统函数 zzXzX)(11)(zWzzX预测预测值与预测误差1 1.调制调制 调制中,误差部分w(n)被量化为wq(n
22、),如下图所示。x(n)按下式由误差和信号间的关系重构:)()1()(nwnxnxqqq即采样离散时间积分器。但在实际中,采用积分器来重构信号的方案并不可行,因为积分器在单位圆上 z=-1 处有一个极点,使得系统不满足BIBO稳定性。2 2.-调制调制 若量化预测值 ,量化后的结果为 ,如下图所示。信号的重构采用低通滤波器来实现,该滤波器必须能够让所有的信号频率成分通过,该滤波器带宽2FB/Fs,其中Fs为采样频率。)1()(nxnx)(nxq该方法对量化噪声有很好的抑制作用,即便在仅使用1比特量化器情况下也能获得不错的性能。当量化器仅有1比特精度时,假设输出信号 为x(n)的最大或最小值。不
23、失一般性,假设信号均值为零,那么 其中x(n)的取值范围 。)(nxqMnxq)(MnxM)(用直接加入量化噪声来替代量化器,如下图所示。此时:其中,H(z)为带宽为2FB/Fs的低通滤波器的系统函数。(n)的方差为2/2/222121eFFFFjfsBsBde上式中假定低通滤波器是理想的,由)()()1()(1neZTzHznZTQ)(12/2/2/jjjjeeee可得|)2sin(|21 je上式说明了量化误差与最终误差之间的幅频关系,如下图。它在低频处较小。-调制调制使得量化噪声尽可能出现在信号x(n)的频带之外。2332238esBfFF假设FBFs,则可利用近似关系sin(/2)/2
24、。上式的计算结果为 -调制的一个应用是1比特模数转换器和数模转换器,如下图所示。采样频率一般较高,所以系统函数1/(z-1)是由连续时间积分器来实现的。如果采样频率非常高,模数转换器和数模转换器可采用较少的量化比特,甚至1比特,即根据输入信号与某一给定的阈值之间的关系来决定输出正值或负值。例:考虑一连续时间信号x(t)其中,F0=10Hz。该弦波的峰峰值为1.0,假定信号幅值的范围-128至+128,则该信号将完全限制在8比特的模数转换器的一个量化值附近。但该模数转换器无法正确数字化这个弦波,仅能将其量化为方波。为解决上述问题可采用-调制,如下图所示,其中采样频率Fs=10KHz。假设1比特的数字化信号仅有+128和-128两种取值。该输出通过数模转换器(标准的零阶保持DAC)以及带宽为15Hz的低通滤波器,得到的重构信号接近于原始信号x(t)。该例说明,-调制能够非常好地量化那些容易被常规量化忽略的小幅度信号。)2cos(5.010)(0tFtx常规的ADC-调制1比特15Hz带宽