1、极化恒等式在向量问题中的应用目标1:阅读材料,了解极化恒等式的由来过程,掌握极化恒等式的两种模式,并理解其几何意义阅读以下材料:M图1 (1) (2)(1)(2)两式相加得:结论:定理:平行四边形对角线的平方和等于两条邻边平方和的两倍.思考1:如果将上面(1)(2)两式相减,能得到什么结论呢? 极化恒等式几何意义:向量的数量积表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的.ABCM即:(平行四边形模式)思考:在图1的三角形ABD中(M为BD的中点),此恒等式如何表示呢?因为,所以(三角形模式)目标2-1:掌握用极化恒等式求数量积的值例1.(2012年浙江文15)在中,是
2、的中点,则_ .解:因为是的中点,由极化恒等式得:=9-= -16【小结】运用极化恒等式的三角形模式,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式。目标检测目标2-2:掌握用极化恒等式求数量积的最值、范围解:取AB的中点D,连结CD,因为三角形ABC为正三角形,所以O为三角形ABC的重心,O在CD上,且,所以,又由极化恒等式得:因为P在圆O上,所以当P在点C处时,当P在CO的延长线与圆O的交点处时,所以【小结】涉及数量积的范围或最值时,可以利用极化恒等式将多变量转变为单变量,再用数形结合等方法求出单变量的范围、最值即可。目标检测1、矩形中,点分别为边上的动点,且,则的最小值是(
3、)A B C D 2、已知是圆上互不相同的三个点,且,则的最小值是 3、已知, 为平面内一点,满足,则的取值范围是 .目标2-3:会用极化恒等式解决与数量积有关的综合问题例3.(2013浙江理7)在中,是边上一定点,满足,且对于边上任一点,恒有。则( )A. B. C. D. 目标检测1、2、2016年江苏如图,在ABC中,D是BC的中点,E,F是AD上的两个三等分点, ,则 的值是 . 3、2014年江苏如图在平行四边形中,已知,则的值是 .课后检测1.在中,若,在线段上运动,的最小值为 2.已知是圆的直径,长为2,是圆上异于的一点,是圆所在平面上任意一点,则的最小值为( ) A. B. C. D. 3在中,若是所在平面内一点,且,则的最大值为 4在,已知点是内一点,则的最小值是 .5.已知是单位圆上的两点,为圆心,且是圆的一条直径,点在圆内,且满足,则的取值范围是( )A B C D6. 正边长等于,点在其外接圆上运动,则的取值范围是( ) A. B. C. D. 7在锐角中,已知,则的取值范围是 8、正方体的棱长为2,是它内切球的一条弦(把球面上任意2个点之间的线段成为球的弦),为正方体表面上的动点,当弦最长时,的最大值为